Making the Top 100 in Ecology: the story of a successful research paper

By Florian Hofhansl, researcher in the Biodiversity, Ecology, and Conservation Research Group of the IIASA Biodiversity and Natural Resources Program

Florian Hofhansl writes about a successful paper on which he was the lead author that was recently ranked #32 on the list of the Top 100 most downloaded ecology papers published in 2020.

Early in 2020, one of my manuscripts titled “Climatic and edaphic controls over tropical forest diversity and vegetation carbon storage” was accepted for publication in the prestigious journal Nature Scientific Reports.

Initially, I was worried about the bad timing when I was informed that the paper would be published on 19 March – right at the onset of the COVID-19 pandemic – since it took me and my colleagues almost a decade to collect the data and publish our results on the biodiversity and functioning of tropical forest ecosystems.

However, my worries completely disappeared when I learned that our research article had received more that 3,000 downloads, placing it among the top 100 downloaded ecology papers for Scientific Reports in 2020. This is an extraordinary achievement considering that Scientific Reports published more than 500 ecology papers in 2020. Seeing our paper positioned at #32 of the top 100 most downloaded articles in the field, therefore meant that our science was of real value to the research community.

We kicked off our study in the dry-season of 2011 by selecting twenty one-hectare forest inventory plots at the beautiful Osa peninsula – one of the last remnants of continuous primary forest – located in southwestern Costa Rica. We did not expect that our project would receive this much scientific recognition as we were merely interested in describing the stunning biodiversity of this remote tropical region. Nevertheless, we were striving to understand the functioning of the area’s megadiverse ecosystem by conducting repeated measurements of forest characteristics, such as forest growth, tree mortality, and plant species composition.

After periodically revisiting the permanent inventory plots, and recording data for almost a decade, we found stark differences in the composition of tropical plant species such as trees, palms, and lianas across the landscape. Most interestingly, these different functional groups follow different strategies in their competition for light and nutrients, both limiting plant growth in the understory of a tropical rainforest. For instance, lianas – which are long-stemmed, woody vines – are relatively fast growing and try to reach the canopy to get to the sunlight, but they do not store as much carbon as a tree stem to reach the same height in the canopy. In contrast, palms share a different strategy and mostly stay in the lower sections of the forest where they collect water and nutrients with their bundles of palm leaves arranged upward to catch droplets and nutrients falling from above, thus reducing local resource limitation.

Lead author Florian Hofhansl and field botanist, Eduardo Chacon-Madrigal got stuck between roots of the walking palm (Socratea exorrhiza), while surveying one of the twenty one-hectare permanent inventory plots © Florian Hofhansl

Our results indicate that each plant functional group – that is, a collection of organisms (i.e., trees, palms, or lianas) that share the same characteristics – was associated with specific climate conditions and distinct soil properties across the landscape. Hence, this finding indicates that we would have to account for the small-scale heterogeneity of the landscape in order to understand future ecosystem responses to projected climate change, and thus to accurately predict associated tropical ecosystem services under future scenarios.

Our study and its subsequent uptake by the research community, illustrates the value of conducting on-site experiments that empower researchers to understand crucial ecosystem processes and applying these results in next-generation models. Research like this makes it possible for scientists to evaluate vegetation–atmosphere feedbacks and thus determine how much of man-made emissions will remain in the atmosphere and therefore might further heat up the climate system in the future.

Our multidisciplinary research project furthermore highlighted that it is crucial to gather knowledge from multiple disciplines, such as botany (identifying species), plant ecology (identifying functional strategies), and geology (identifying differences in parent material and soil types) – since all of these factors need to be considered in concert to capture the complexity of any given system, when aiming to understand the systematic response to climate change.

Read more about the research here: https://tropicalbio.me/blog

Reference:

Hofhansl F, Chacón-Madrigal E, Fuchslueger L, Jenking D, Morera A, Plutzar C, Silla F, Andersen K, et al. (2020). Climatic and edaphic controls over tropical forest diversity and vegetation carbon storage. Scientific Reports DOI: 10.1038/s41598-020-61868-5 [pure.iiasa.ac.at/16360]

Note: This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.

Why we need basic sciences for sustainable development more than ever

By Michel Spiro, President of the International Union of Pure and Applied Physics (IUPAP) and President of the Steering Committee for the proclamation of the International Year of Basic Sciences for Sustainable Development in 2022 (IYBSSD 2022)

A consortium of international scientific unions and scientific organizations’ plans to declare 2022 the International Year of Basic Sciences for Sustainable Development are underway. Michael Spiro makes the case for why the world needs this now more than at any time in the past.

© Dmytro Tolokonov | Dreamstime.com

For almost a year and a half now, the world has been disrupted by the COVID-19 pandemic caused by the SARS-CoV-2 virus. But how much worse could the situation have been without the progress and results produced for decades, even centuries, by curiosity-driven scientific research?

We deplore the many deaths due to COVID-19, and the future is still very uncertain, especially with the detection of new variants, some of which are spreading more quickly. But how could we have known that the infection was caused by a virus, what this virus looks like and what its genetic sequence and variations are without basic research?

Viruses were discovered at the beginning of the 20th century, thanks to the work of Frederick Twort, Félix d’Hérelle, and many others. The first electron microscope was built in the 1930s by Ernst Ruska and Max Knoll; and DNA sequencing began in the mid-1970s, notably with research by the groups of Frederick Sanger and Walter Gilbert.

Such a list could of course go on and on, with basic research at the root of countless tests, treatments, vaccines, and epidemiological modeling exercises. We even owe high-speed, long-distance communications, which allow us to coordinate the fight against the pandemic and reduce interruptions in education, economic activities, and even the practice of science, to the discovery and study of electromagnetic waves and optic fibers during the 19th century, and the development of algorithms and computers codes during the 20th century. The COVID-19 pandemic is a reminder (so harsh and brutal that we would have preferred to have been spared) of how much we rely on the continuous development of basic sciences for a balanced, sustainable, and inclusive development of the planet.

On many other issues, basic sciences have an important contribution to make to progress towards a sustainable world for all, as outlined in Agenda 2030 and its 17 Sustainable Development Goals, adopted in September 2015 by the United Nations General Assembly. They provide the essential means to address major challenges such as universal access to food, energy, and sanitation. They enable us to understand the impacts of the nearly eight billion people currently living on the planet, on the climate, life on Earth, and on aquatic environments, and to act to limit and reduce these impacts.

Indeed, unlike our use of natural resources, the development of the basic sciences is sustainable par excellence. From generation to generation, it builds up a reservoir of knowledge that subsequent generations can use to apply to the problems they will face, which we may not even know about today.

The International Year of Basic Sciences for Sustainable Development (IYBSSD) will focus on these links between basic sciences and the Sustainable Development Goals. It is proposed to be organized in 2022 by a consortium of international scientific unions and scientific organizations* led by the International Union of Pure and Applied Physics (IIUPAP) with the recommendation of a resolution voted by the UNESCO General Conference during its 40th session in 2019. Over 50 national and international science academies and learned societies and around 30 Nobel Prize laureates and Fields Medalists also support this initiative. The Dominican Republic has agreed to propose a resolution for the promulgation of the IYBSSD during the 76th session of the United Nations General Assembly, beginning in September 2021.

We very much hope that scientists, and all people interested in basic science, will mobilize around the planet and take this opportunity to convince all stakeholders – the general public, teachers, company managers, and policymakers – that through a basic understanding of nature, inclusive (especially by empowering more women) and collaborative well-informed actions will be more effective for the global common interest. As IIASA is one of the consortium’s founding partners, we especially invite all IIASA scientists, alumni, and colleagues they are collaborating with to create or join national IYBSSD 2022 committees to organize events and activities during this international year.

More information, as well as communication material, can be found at www.iybssd2022.org. This will also be shared through social media accounts (look for @iybssd2022 on Facebook, Twitter, LinkedIn and Instagram). You are also invited to subscribe to the Newsletter here.

* Consortium members

The International Union of Crystallography (IUCr); the International Mineralogical Association (IMA); the International Mathematical Union (IMU); the International Union of Biological Sciences (IUBS); the International Union of Geodesy and Geophysics (IUGG); the International Union of Pure and Applied Chemistry (IUPAC); the International Union of History and Philosophy of Science and Technology (IUHPST); the International Union of Materials Research Societies (IUMRS); the International Union for Vacuum Science, Technique, and Applications (IUVSTA); the European Organization for Nuclear Research (CERN); the French Research Institute for Development (IRD); the International Institute for Applied Systems Analysis (IIASA); the European Physical Society (EPS); the Joint Institute for Nuclear Research (JINR); the Nuclear Physics European Collaboration Committee (NuPECC); the International Centre for Theoretical Physics (ICTP); the International Science Council (ISC); Rencontres du Vietnam; the Scientific Committee on Oceanic Research (SCOR); the Square Kilometre Array Organization (SKAO); and  SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East).

Note: This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.

Solutions providing multiple resilience dividends require an integrated approach

 

Disaster Risk Reduction investments bring a wide variety of benefits, including economic, ecological, and social, but in practice these multiple resilience dividends are often not included in investment appraisals or are not recognized by those making funding decisions. How do we change this?

Research led by the London School of Economics and Political Science with IIASA and Practical Action published in the Working Paper Multiple resilience dividends at the community level: A comparative study on disaster risk reduction interventions in different countries highlights the need for an integrated decision-making framework to overcome the challenges.

The negative effects of disasters on people and communities are varied and far reaching, and will only get worse as climate change make floods and other natural hazards more frequent, severe, and unpredictable. Disasters lead to loss of lives, assets, and livelihoods, they undermine or destroy development progress. Since 2000 climate related hazards have caused $2.2 trillion of losses and damages and have affected approximately 3.9 billion people globally.

With investments in disaster risk reduction (DRR), where community resilience is enhanced these negative impacts can be reduced and savings can be made. It’s more cost effective to invest in pre-event resilience than post-event response and recovery.

So why is disaster risk reduction so difficult to finance?

The problem with estimating the direct benefit of disaster risk reduction interventions is that you only see the benefits when an event which would otherwise have turned into a disaster occurs and is successfully mitigated.

This makes cost-benefit analysis and other decision-making methods difficult to carry out, and makes the costs of doing something more aligned to the probability of the event, rather than the lives and economic costs saved, thus changes to policy and practice are slow to materialize.

What are the multiple dividends of resilience?

The multiple dividends of resilience refer to positive socioeconomic outcomes generated by, and co-benefits of, an intervention beyond, and in addition to, risk reduction.

It’s an approach aimed at making DRR investments more attractive as the multiple dividends of an investment may help identify win-win-win situations (as well as trade-offs), even if no hazard event occurs. Co-benefits can be intended, or unintended.

As framed by the Triple Resilience Dividend concept these benefits can be divided into three categories:

1. The avoided losses and damages in case of a disaster

For example, how bio-dykes in Nepal prevent river bank erosion, which reduces the risk of flooding, and associated sand deposits that ruin the fertility of agricultural land.

2. The economic potential of a community that is unlocked through the intervention

This includes ecosystem-based adaptation solutions in Vietnam where mangrove plantations create new habitats for fish, leading to improved livelihood opportunities for those making their living from fishing.

3. Other development co-benefits

Transition to solar stoves in rural Afghanistan does not only protect natural capitals from degradation, but also empowers women and girls, reduces in-house smog pollution, and fosters technological innovations.

Rongali next to his community’s bio-dyke. Photo by Sanjib Chaudhary, Practical Action.

What are the challenges?

The triple resilience dividend approach is often linked to new and innovative solutions like ecosystem based adaptation, where the benefits can be wider, but when and how they will materialize is more uncertain than with traditional, hard infrastructure solutions.

Although many developing countries have policies that align DRR, climate change adaptation, and sustainable development, sadly, in practice, local decision makers assume that multiple resilience dividends will only accumulate over the long term. This often leads them to select traditional, hard infrastructure solutions that offer quick and more visible protection.

We need more success stories. Pilot interventions can be shared and shown to community members and decision makers to overcome their skepticism but this require better and more comprehensive evidence than we have today.

We also lack decision-making frameworks that can include and monitor multiple resilience dividends. Frameworks that support planners as they navigate the decision-making process, and help generate the evidence needed.

Community members in the Peruvian Andes working at a local tree nursery. Photo by Giorgio Madueño , Practical Action

How do we overcome these challenges?

The solution suggested in Multiple resilience dividends at the community level: A comparative study on disaster risk reduction interventions in different countries is an integrated decision-making framework that allows to systematically include, appraise, implement, and evaluate individual resilience dividends at each stage of the decision-making process.

Application and relevance matters.

As we suggest, instead of maximizing resilience dividends based on a specific, one dimensional, metric (e.g., monetary benefits) decision-making approaches need to identify those dividends that are most needed and demanded by the community and the solutions, novel or local in nature, best suited to generate these.

A structured approach in combination with participatory decision making allows for a tailored approach where community buy-in is achieved by prioritizing the resilience dividend(s) that matter most to them, while at the same time contributing to the evidence base for multiple resilience dividends.

This is urgently needed to highlight the fundamental challenges with the existing planning and decision-making system and therefore generate demand to deliver more effective solutions at scale.

Cleaning waste from river in Penjaringan Urban Village, Jakarta, Indonesia. Photo by Piva Bell, Mercy Corps.

Read the working paper this blog is based on here.

This blog post first appeared on the Flood Resilience Portal. Read the original post here.

Note: This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.

Multiple benefits of Disaster Risk Reduction investments

By Julian Joseph, research assistant in the Water Security Research Group

Julian Joseph explains the concept of the triple dividend of disaster risk reduction investments based on the application of a novel economic model applied to a case study undertaken in Tanzania and Zambia.

What are the benefits of Disaster Risk Reduction (DRR) investments such as dams and the introduction of drought-resistant crops in agriculture for an economy? They are threefold and called the “triple dividend” of DRR investments. The first dividend comprises the direct effects of DRR investments, which limit damage to houses, infrastructure, and other physical assets and prevent death and injury. The second dividend unlocks the economic potential of an economy because risk reduction drives people and businesses to invest more, as they expect less of what they invest in to be destroyed by disasters, while the third dividend is comprised of development co-benefits through other uses the investments provide.

© Gerrit Rautenbach | Dreamstime.com

Using a new macroeconomic model called DYNAMMICs, my colleagues and I have found that there is often a significant growth effect for the economy attached to investing in mitigation measures like dams and drought resistant crops, which is commonly underestimated in traditional models. One reason for this is the focus of other models on only the first, direct dividend. We specifically looked into the examples of Tanzania and Zambia, which show that governments and other stakeholders in developing countries can spur economic growth by investing in DRR measures, thus increasing future earnings and creating a safe environment for investments into other economic activities.

In Tanzania and Zambia, floods affect tens of thousands of people each year (on average 45,000 or .08% of the population in Tanzania and 20,000 or .11% of the population in Zambia). Droughts have more widespread consequences and already affect 11.8% of the population in Tanzania and 19% of Zambians who often lose all or parts of their harvest. This poses an imminent threat to food security in countries where substantial shares of the population rely on subsistence farming as their primary source of income. Given the effects of climate change, these numbers and their ramifications are bound to become ever more pressing issues. However, policymakers, institutions, enterprises, and individuals tend to underinvest in adaption measures.

A promising avenue for demonstrating the potential of DRR investments is offered by including all economic growth effects they invoke into policy analysis, thus showing that besides risk reduction and post-disaster mitigation of destruction, investing in DRR measures can help countries achieve many of their other development goals as well.

We tend to only think of the first dividend of DRR investments, the direct effects of which stop people from being immediately affected by disasters. In the case of Tanzania and Zambia, we examined, among others, the benefits of constructing additional dams. The direct benefits of dams lie in the safeguarding of livelihoods, infrastructure, housing, and agricultural production. These are seen as the first dividend, called the ex-post damage mitigation effect. There are however also additional co-benefits.

In both Tanzania and Zambia, large shares of the population are heavily dependent on agriculture, which makes the introduction of drought-resistant crop varieties such an additional benefit. These crop varieties do not only help farmers preserve their yields in times of disastrous droughts, but additionally support farmers by generating higher yields, even in the absence of disaster. This effect is boosted by the lowered risk for the loss of crops, which spurs investment into farming activities and inputs. Farmers who do not fear losing their entire harvest can, and generally will, invest more into the production of this crop – an example of the second type of dividend, the ex-ante risk reduction effect. This type of economically beneficial effect materializes regardless of the onset of disaster.

The same is true for the third type of dividend, the co-benefit production expansion effect, which is especially relevant for the advantages of dams. The power generation capability of dams, leads to much larger economic gains than the two other dividends combined. In countries such as those at hand with frequent power cuts and comparably low levels of electrification, especially in rural areas, the additional electricity generated can lead to particularly pronounced positive effects by supplying economic actors with access to power. In other scenarios, the provision of ecosystem services is also an important effect falling into this category.

The results we obtained using the DYNAMMICs model are promising: Constructing only two additional dams leads to a 0.3% increase of GDP growth in Tanzania for the next 30 years (0.2% in Zambia) with results largely (97%) driven by the co-benefit production expansion effect. Similarly, the introduction of drought resistant crops and exposure management (i.e., land use restrictions) significantly boost economic growth perspectives. Finally, introducing insurance is a driver for a reduction in the variance of GDP growth, which helps to reduce uncertainty for everyone in the economy. Modeling in such a fashion is therefore an important means of weighing policy options for DRR against each other and for determining optimal levels of investment.

Note: This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.

Using the COVID-19 pandemic to transform the energy sector

By Husam Ibrahim, International Science Council (ISC)

The IIASA-ISC Rethinking Energy Solutions Report identifies the negative and positive lessons learnt from the ongoing COVID-19 pandemic in relation to energy consumption and demand, and recommends several immediate actions.

Credit: Adam Islaam – IIASA

As a result of the pandemic’s confinement and containment policies, energy demand and resulting energy-related carbon emissions declined by an estimated 2.4 billion tonnes in 2020 – a record drop according to researchers at Future Earth’s Global Carbon Project. However, the reduction is likely to be short-lived if structural changes do not occur.

The COVID-19 pandemic has caused foreseeable positive and negative disruptions to the global energy sector. This has revealed opportunities that can be learnt from to meet Sustainable Development Goals (SDGs) and the Paris Agreement pledges, with the positive disruptions showing us the possibility of a more sustainable and resilient future.

The IIASA-ISC Rethinking Energy Solutions Report recommends actions based on the opportunities and vulnerabilities in energy systems that the COVID-19 pandemic has brought to light.

“The pandemic is a threat, but also an opportunity, because it showed that the system we have spent a lot of money and resources on is not working the way it should, so the crisis should be used to draw up new budgets, take new actions, and rebuild society.”

– Behnam Zakeri, Research Scholar, IIASA

The report highlights that solutions previously thought to be out of reach are far more possible than expected. One such positive outcome is the digitalization of physical activities, such as attending work, schools, conferences, and other gatherings online. This has resulted in short-term lifestyle changes — introducing and normalizing digital solutions for a mass audience — which the report recommends capitalizing on in a post-COVID society.

Some companies, like Spotify, a music streaming service, have announced that they will let their employees work remotely from anywhere after the pandemic. The report suggests that more companies and governments should do the same, as digitalization offers opportunities to use resources more efficiently, and so has the potential to make consumption more sustainable and to reduce carbon footprints.

Efforts to digitalize and reduce the population’s carbon footprint work hand-in-hand with the need to reinvent urban spaces to reach the SDGs and combat climate change.

Cities consume 60-80% of global energy and produce more than 70% of carbon emissions. What’s more, 70% of the world’s population is projected to live in urban areas by 2050.

The report proposes that cities should be redesigned into more sustainable ‘urban villages’ so that they are optimized for energy efficiency. One way to do this would be to redesign cities into compact neighborhoods where all amenities (shops, offices, schools, etc.) are within walking distance. Paris, France, for example, promotes self-sufficient neighborhoods, with all the essential amenities placed within a 15-minute radius. Several other cities like Melbourne, Australia, with its “20-minute neighborhoods” and the Nordhavn “5-minute neighborhood” in Copenhagen, Denmark, are promoting this new standard for the use of space and sustainable mobility.

Another key approach to reinventing urban spaces is prioritizing nature-based solutions by using parks, green roofs, green walls, and blue infrastructure to combat climate change and connect the population back to nature. This also means centering public spaces around people, by converting street spaces from car use to sidewalks and bike lanes, and enhancing the quality and safety of walking and biking infrastructures.

The report also recommends that cities be rebuilt to incorporate renewable energy. The costs for renewable technologies are declining quite fast, but Zakeri explained that the problem with moving to renewable energy is not the cost but a lack of understanding. Consumers, experts, and governments lack the knowledge to distribute, access and install these technologies. However, in recent times, scientists and other experts have brought more awareness to them and are helping the trend move forward.

The report states the importance of developing net zero-energy communities that have a holistic approach to energy-efficient building renovation and construction of new buildings. The net zero-energy design must consider the energy interactions between individual buildings and the broader energy system on a local level.

These recommended actions aren’t just about energy efficiency but about creating a more fulfilling life for all.

“Rebuilding cities to be more sustainable and resilient [to future crises] not only has the potential to reduce energy consumption but also create a more joyful lifestyle that improves the wellbeing and experience of people living in a city.”

– Behnam Zakeri, Research Scholar, IIASA

For more information on rebuilding urban spaces, and addressing energy lessons from the COVID-19 pandemic read the IIASA-ISC Rethinking Energy Solutions Report.

You can also watch the discussion on Rethinking Energy Solutions as part of the launch event for the Bouncing Forward Sustainably: Pathways to a post-COVID World, which explores the key themes of Sustainable Energy, Governance for Sustainability, Strengthening Science Systems and Resilient Food Systems.

 

This blog post was first published on the website of the International Science Council. Read the original article here.

Note: This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.