Learning from COVID-19 and upgrading sustainable governance

By Husam Ibrahim, International Science Council (ISC)

The IIASA-ISC Enhancing Governance for Sustainability Report identifies the lessons learnt from the ongoing COVID-19 pandemic in relation to upgrading risk governance.

Credit: Adam Islaam – IIASA

As some governments and their administrations, individuals, and science systems begin to adapt to COVID-19, the struggle still continues in many countries. With that, the world is slowly leveraging the insights this pandemic has offered, standing at the cusp of a new world, which faces multiple stressors and is in need of more resilient governance.

Globally, national governments were put under the microscope. Some, such as Singapore and South Korea, succeeded with evidence-based, swift national leadership coupled with clear crisis communication. This proved useful for containing the spread of the COVID-19 virus and with it brought necessary recovery initiatives. In other countries, such as the United States, tackling the crisis has been characterized by governance challenges, including crisis plans with layers of shared responsibility being ignored in favor of “management by panic” approaches.

The pandemic has highlighted the flaws of neoliberal governance that prioritizes economic growth, deregulation and a separation between people and nature ahead of policies centered around human and ecosystem health and wellbeing.

To this effect, the IIASA-ISC Enhancing Governance for Sustainability Report goes beyond just considering the roles and responsibilities of governments, and adopts a broader definition of governance as, “the totality of actors, rules, conventions, processes, and mechanisms concerned with how relevant…information is collected, analyzed and communicated, and how management decisions are taken”.

In a world confronted with future risks such as spiraling climate change, ecosystem collapse and dwindling resources, global governance needs to be reformed.

The report states that the global community needs to engage in multi-directional and more integrated learning, problem identification and decision making. This should enable the shift towards more sustainable and equitable development in an ever-riskier world.

A disease with no respect for borders requires a collective response, said Volkan Bozkir, President of the United Nations General Assembly, adding that, “COVID-19 is a practice test that exhibits our weaknesses; we must build resilience now for whatever comes tomorrow.”

The pandemic highlighted widespread global fragmentation, which was initially observed through uncoordinated and sometimes competing actions. The report explains that organizations and agencies with similar objectives fought over resources, when instead they should have been bridging their divides and working cooperatively to eliminate competition. In the meantime, as the divide is bridged, special crisis provisions should be established for activation in case urgent action is needed again.

The report also recommends strengthening science–policy interactions to enable evidence-based decision-making, in which science systems collaborate with governments at all governance levels. Global and regional collaboration is especially important given the uneven scientific capabilities across countries and the need to tackle the pandemic everywhere to achieve health outcomes for all.

Working effectively at the interface of science and policy has been a challenge for many countries, which warrants further investigation. However, scientists have tried to step up to the challenges in some unprecedented ways.

For example, online repositories started publishing COVID-19 studies as pre-prints so that their findings could be used by all scientists quickly. As a result, researchers have identified and shared hundreds of viral genome sequences, and several hundreds of clinical trials have been launched, bringing together hospitals and laboratories around the globe.

Mukhisa Kituyi, the Secretary-General of the United Nations Conference on Trade and Development, referred to international scientific collaboration in reference to COVID-19, as the “engine of global science” and said, “It is thus crucial that scientific responses are based on international collaboration that brings together the best minds and available data from different countries for the benefit of all”

Therefore, to reform global governance, evidence-sharing arrangements need to be centered on a global level with reliable evidence, which must be made available swiftly in times of crises. In order for this to happen, the report recommends the creation of specialized advisory bodies that offer consultations on a regular and on-demand basis. The report also suggests involving diverse stakeholder perspectives in these consultations.

Another key point to enhancing sustainable governance is risk reduction management, which should be a fundamental component of decision-making and a part of the investment in sustainable development. The report states that a global socio-ecological resilience and risk dialogue should be launched, engaging policymakers, civil society, the private sector, and the scientific community in mapping risks and their drivers at different scales and discussing their implications for risk governance, prevention and preparedness. Such an engagement process would increase the understanding and communication of the compound, systemic nature of risks driven by infectious diseases, climate change, and other socio-ecological stressors.

“A more holistic approach to risk that better takes into account the many intricate links between nature and people is sorely needed if we are to achieve the Sustainable Development Goals.”

– Anne-Sophie Stevance, ISC

Unifying fragmented global organizations and governance, forming scientific evidence-based policies with the help of science systems, and enhancing levers pertaining to risk management are only some of the recommendations in the report. For more information on upgrading risk governance read the IIASA-ISC Enhancing Governance for Sustainability Report.

You can also watch the discussion on Learning from COVID-19 and upgrading sustainable governance as part of the launch event for the Bouncing Forward Sustainably: Pathways to a post-COVID World initiative, which explores the key themes of Sustainable Energy, Governance for Sustainability, Strengthening Science Systems, and Resilient Food Systems.

 

This blog post was first published on the website of the International Science Council. Read the original article here.

Note: This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.

How we count energy poverty is broken, requires new framework

By Shonali Pachauri, Research Group leader, Transformative Institutional and Social Solutions

Shonali Pachauri discusses a new framework developed at IIASA to more accurately identify the energy poor.

PowerForAll

Energy is a prerequisite for economic and social development. Today, it is widely believed that there are 840 million people still living without electricity in Africa and Asia, while many more are without access to reliable power. And because of COVID-19, this number is growing again.

But what if this data, which governments and donors rely on to allocate money and shape policy, are flawed? And what if we’re even further from eradicating energy poverty than we think? This is the conclusion of a new framework for counting energy access.

The United Nations uses a simple indicator of the share of population with electricity connections to measure energy access. But this grossly underestimates the number of energy poor, because it considers a household to have access even if they receive irregular quality and hours of electricity supply or are unable to afford anything beyond an electric light.

Recent efforts to improve how we measure energy poverty have made vast improvements but have now resulted in frameworks that are complicated and “data needy”, therefore difficult to scale up to a global level.

A new framework developed by IIASA builds on existing measurement frameworks, but simplifies and advances these to more accurately identify the energy poor. It has already been applied to actual data from Ethiopia, India, and Rwanda to test how well it captures energy poverty in comparison to the World Bank’s Multi-Tier Framework (MTF).

The framework distinguishes between two aspects of access: the quality of power supply and the circumstances of the end-user. This distinction is important to better direct policy efforts where they are most needed, that is, to energy suppliers and/or to households. It also reduces the number of dimensions and tiers to simplify the MTF.

Instead of correlating energy consumption with energy access, a key advancement of the new framework is using ownership of different types of appliances as a proxy for measuring household amenities and services derived from the use of these appliances to improve wellbeing. Electricity consumption is a misleading measure of energy service, because for those who use inefficient appliances, more consumption does not translate into more service. For instance, a household using six inefficient light bulbs is not better off than one that uses three efficient high luminosity light points and an efficient fan that provides comfort from the summer heat. The framework also improves on how affordability is measured to consider appliance purchase costs in addition to recurrent electricity expenditures in assessing the budget share spent on electric services.

When applied to real data, the framework suggests that the energy poor are more segmented than what is reflected by existing binary or MTF indicators. The categorization of households according to electricity consumption differs markedly from that according to energy services and using appliance ownership, revealing greater heterogeneity among the energy poor than what is reflected in the MTF’s consumption-based indicator.

In addition, the new framework shows that affordability is even more of a constraint to gaining access to modern electric services for households in Ethiopia, India, and Rwanda than reflected by the MTF. According to the MTF’s indicator of affordability, practically no one in Ethiopia or India would be considered unable to afford electricity access. However, if one includes the discounted cost of appliances needed to consume electricity in the indicator, about a third of the population in India and Ethiopia might be categorized as facing issues with affordability. In Rwanda, even without considering the discounted cost of appliances, most electricity consuming households are faced with affordability constraints to using basic electric services at home.

This evolution of measuring energy access is just a first step to more accurately counting the energy poor. This needs to go hand in hand with better data gathering, especially for countries and regions that face the biggest challenges in terms of extending access to modern energy services. Further refinements and applications of the framework can help improve how we identify the most vulnerable and design and target policies to achieve true energy access for all.

This blog post was first published on the PowerForAll Energy policy website. Read the original article here.

Note: This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.

The footprint of COVID-19 on carbon emissions and future work at IIASA

By Greg Davies-Jones, 2020 IIASA Science Communication Fellow

Greg Davies-Jones finds out how COVID-19 has lightened the carbon footprint of IIASA and uncovers how the institute plans to integrate climate protection and sustainability into everyday research activities.

The impact of COVID-19 has been profound and pervasive, infiltrating deeply into many spheres of society. IIASA has not escaped the clutches of the pandemic either: The phrase ‘unprecedented times’ has become just as commonplace here at the institute as it has across the globe. Despite the overt and all too evident adverse consequences of COVID-19, there is a significant, albeit only temporary, positive aspect of a lockdown existence, namely a reduction in carbon dioxide (CO2) emissions.

At IIASA, the principal decline in CO2 emissions has been due to the drop-off in business travel. With individual mobility heavily restricted, travel arising out of research activities, meetings, and conferences has dropped to almost zero. To fill the void, the virtual world is rapidly becoming the everyday reality: Zoom calls, Skype meetings, audio hiccups, video glitches, and the occasional gallivanting toddler have fast become the norm in this new working world.

Schloss Laxenburg | ©IIASA

In the years to come, when the COVID-19 cobwebs are finally blown away (hopefully), might this new working world become more commonplace? A hybrid between the pre-COVID-19 and post COVID-19 worlds perhaps? One thing is certain: The continuation of business-as-usual will be catastrophic environmentally. A recent climate poll documented in The Guardian found despairingly that people are planning to drive and, in some cases, even fly more in the future than before the coronavirus pandemic. The dangerous inference that could be drawn from this is that, rather than merely a disconnect between individual actions and outcomes, there are conscious choices being made that are increasingly recognized as being highly inimical to the continued existence of most life forms on this planet.

Given the global shock to the economy, cost will also be a key factor influencing decisions in the post COVID-19 world. Virtual conferencing is pre-eminently a cheaper alternative. Although not a perfect substitute for in-person meetings – it does come with advantages (e.g., lower resource requirements and better accessibility) as well as disadvantages (e.g., lacking informal exchanges).

“Another aspect is inclusivity  ̶  virtual conferencing affords people the opportunity to engage with relative ease (provided they have a sound internet connection), irrespective of their geographical location,” explains IIASA researcher Caroline Zimm.

Fellow researcher, Benigna Boza-Kiss, continues: “The virtual working world can be fruitful and effective, but we must be more strategic in how it is organized. Structured meetings with specific objectives planned in advance will allow for ineffectual activity and call-times, which similarly generate emissions, to be reduced.”

Notwithstanding these positives of a virtual working environment, there are some apprehensions, particularly regarding the impossibility of virtual platforms to meaningfully replicate certain types of social interactions, including those that occur outside structured sessions at conferences. Conversations beside the coffee machine, chinwags in the corridor, or even the post-work evening revelry – all such serendipitous moments and gainful interaction are considered invaluable in providing the ‘complete’ conference experience. Yet, the virtual world can offer other distinct advantages.

“In video calls and online conferencing platforms, it is not as daunting to ‘raise a hand’ or contact someone more senior. I have found that some people actually speak up more (often using the chat function) than they would in a physical conference setting. This means a shift in the networking dynamic and perhaps even greater inclusivity,” says Zimm.

The lightening of the carbon footprint of IIASA research ventures will likely be short-lived unless we make fundamental changes over the long-term. As the time window in which we can effectively act on climate change inexorably closes, it is imperative that we do more to attain the universal climate goals written into the Paris Agreement.

In light of this challenge, and considering the work of IIASA as a leader in environmental and sustainability studies, it feels appropriate to ask: Should the prevailing ethos of environmental institutes and practitioners therein openly acknowledge and embrace the responsibility to act as role models in reducing negative environmental impact? Put bluntly, should it be incumbent upon them to ‘walk the talk’? Are people more likely to respond to organizations and researchers that practice what they preach?

Many environmental institutes and researchers, at least nominally, would agree, but this purported espousal must be underpinned by concrete action. In 2019, IIASA joined forces with Climate Alliance Austria – an organization focusing on awareness-raising projects and activities to promote knowledge on climate issues and sustainable development. The IIASA-Climate Alliance mandate is to integrate climate protection and sustainability into everyday research.

To advance this philosophy, IIASA has formed an internal Environment Committee that focuses on nurturing more environmentally friendly processes and activities at the institute. To this end, the committee has organized an evaluation and is elaborating a strategy that includes developing Green Event Guidelines, powering IIASA with certified green electricity, and encouraging individual action with a ‘Bike to Work’ scheme.

For the most part however, these are all fledgling initiatives that require cultivation, top level support and leadership to ensure success. Moreover, these initiatives necessitate additional targeted and hard-hitting emission-mitigation strategies to avoid frustratingly commonplace ‘greenwashing’ and ensure decisive, positive internal climate action. More stringent measures, such as the institute’s proposed stricter sustainable procurement and travel policies, will arguably make a powerful and lasting contribution to this over-arching aim of “reconfiguring” IIASA as an employer that is doing all it can to implement and facilitate sustainable working practices for its entire workforce.

Note: This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.

Reducing footprints and enhancing resilience: A strategic direction for the next decade

By Rachel Potter, Communications Officer in the IIASA Communications and External Relations Department.

Several members of the IIASA Strategic Taskforce share their views on the bold new IIASA strategic agenda, how it came to be, and what it promises for the future.

What will the world look like in 2030 and beyond? We are living in extraordinary times and our rapidly transforming planet faces multiple global sustainability challenges, threats, and opportunities. How will research institutes like IIASA continue to make meaningful contributions to address these complex issues?

This is precisely what IIASA has been exploring over the past 18 months while formulating its strategic direction for the next 10 years. Through institute-wide consultations, a strategic taskforce was entrusted with coordinating the process that led to “Reducing footprints, enhancing resilience” – the institute’s ambitious new strategy for 2021-2030 that positions IIASA as the primary destination for integrated systems solutions and policy insights.

A bottom-up inclusive approach

The strategy consultation process was very different to those previously undertaken at IIASA. Acting Transitions to New Technologies Program Director and Energy Program researcher, Shonali Pachauri describes the rationale behind the process:

“While in the past strategic planning had largely been driven by the directorate and program directors, this time, mid-career scientists were to drive the process forward. It was not meant to be one researcher from each program on the taskforce, but it ended up being something like that, so we had a broad representation of disciplines from across the institute. The taskforce was responsible for developing the scientific content of the plan and we did this in an inclusive manner with input from staff through workshops, an online platform, and both informal and formal meetings.”

Reflecting our changing world

The UN Sustainable Development Goals (SDGs) established in 2015, are clearly reflected in the new strategy. Linda See, a researcher in the Ecosystems Services and Management Program, explains:

“We have always worked on sustainable development and transformations but this is now more of a focus compared to the previous strategy. The emphasis is on using our expertise as systems scientists to explore the interrelationships between different SDGs and how there can be synergies and trade-offs in different scenarios to achieve them.”

“Another key shift is that the new strategic plan takes a human-centered approach, placing more emphasis on how people are a core component of pathways towards sustainability and resilient societies,” adds World Population Program Deputy Program Director, Raya Muttarak.

Fellow taskforce member and Acting Water Program Director, Yoshihide Wada, agrees:

“This focus on social science, governance, and human behavior came out of our consultations with staff. IIASA researchers really want to go in this direction. People increasingly understand that with the climate and environmental goals in particular, it can’t only be technology and bioeconomy, it has to be about lifestyles as well, which means we need to strengthen our ability to analyze behavior and identify which levers to pull to encourage lifestyle changes.”

“There is also a stronger focus on biodiversity. The importance of this was borne out of the current COVID-19 crisis. Looking at the origin of the virus and how the pandemic has been aided by the loss of biodiversity – it’s evident that this is crucial,” adds Manager of Library and Knowledge Resources, Michaela Rossini.

Building on strong foundations for continued innovation

Taskforce members agree that the new strategy consolidates the unique strengths of IIASA while providing the space and flexibility for innovation.

“IIASA is unique not only because of our excellence in the fields of energy, environment, climate change, and ecosystems services but also because we have strong, empirically-based analyses and studies from social sciences, which can quantify and forecast relevant demographic, social, and economic dimensions in systems analysis,” says Muttarak.

“I think the new strategy pushes the interdisciplinarity at IIASA even further. The new program structure is very integrated. This is vital to facing today’s sustainability challenges. There are big aspirations in the strategy and it’s our responsibility to translate this into practice. As scientists, we have to be open to change and include elements that we may never have thought of. It makes things very interesting. It makes innovation happen,” Wada adds.

Pachauri explains that IIASA was created as a science-to-policy interface in 1972 and its purpose has always been to bridge divides: both between disciplines and across transnational boundaries. The new strategy really builds on this history. While the institute innovates a lot in terms of models and methods, this always happens through an applied lens of doing something that will ultimately feed into policy.

One of the institute’s key strengths is its relationships with its National Member Organizations and strong global network. These relationships are what make it possible to tackle the real-world problems society faces today. The flexibility to work across networks, countries, and different levels of government is strongly emphasized in the strategy.

A bit like family

According to Muttarak, the process of drawing up the new IIASA strategy has been a great opportunity to work with people from different programs and units. Not only has this allowed everyone involved to get to know their colleagues better, but it has also enhanced team members’ understanding of systems analysis and the importance of IIASA.

“It was challenging and rewarding, a bit like family!” comments Pachauri. “There was a lovely dynamism in the team and although we had a Chair, everyone had a chance to lead at various times in the process.”

“As the only non-scientist I found working on the taskforce invaluable – understanding more about IIASA research and getting to know scientists from across the institute has really enhanced my awareness of what they do and what their needs are going forward,” Rossini concludes.

The full IIASA Strategic Taskforce is comprised of: Luis Gomez Echeverri, Matthias Jonas, Mauricio A. Lopes, Junko Mochizuki, Raya Muttarak, Shonali Pachauri, Michaela Rossini, Linda See, Thomas Schinko, Yoshihide Wada, and Fabian Wagner.

Note: This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.

The coronavirus crisis as an opportunity for an innovative future

By Nebojsa Nakicenovic, Director of and Emeritus Research Scholar at IIASA

IIASA Emeritus Scholar Nebojsa Nakicenovic explains how the societal disruptions caused by the coronavirus pandemic can offer an opportunity for a more sustainable and innovative future.

While the future of humanity has always been unpredictable, major challenges⁠ — like the current pandemic — have been an inevitable part of our shared history. What is different now, however, is that human beings have become the dominant force of planetary change. In other words, the Anthropocene has arrived, and with it an unprecedented opportunity to steer our collective future.

Science, technology, and innovation (STI) are the drivers of this change, and can also be the means of achieving a sustainable, equitable, and resilient future for both human civilization and the biosphere. These tools, however, need to be complemented with the necessary evolutions of our economies, public institutions, and behavioral norms. The rapid rise in inequality and resource consumption over the last few decades, for example, has led to increasing pressure on people and the planet in ways that are clearly unsustainable. It is within this context that the COVID-19 pandemic could become a disruptive event that triggers fundamental change toward a more desirable future for all.

Human history is rich with other instances of rapid social and environmental evolution, from the agricultural turn of the Neolithic Revolution some ten thousand years ago to the explosive changes brought about by the Industrial Revolution two centuries ago. However, it was the ‘great acceleration’ of the last 50 years, characterized by exponential growth of consumption and rapid degradation of planetary support systems, that brought us to the geophysical limits of our home world for the first time. These rapid developments were neither smooth nor pervasive, and were interlaced with many crises, wars and pandemics, natural disasters, and numerous other disruptive events. Yet over the last 200 years we’ve seen a 7x increase in the global population, a 100x increase in economic output, and a 20x increase in carbon dioxide emissions.

Photo by Holger Link on Unsplash

In the aftermath of major crises that caused deep disruption, loss of life, and the destruction of capital and jobs, a ‘new normal’ eventually emerged — the major depressions of the 1870s and 1930s, as well as the oil crisis of the 1970s, are just three examples among many. Events like these arguably amplified the limits and disadvantages of the ‘old’ and paved the way for the ‘new’, with each crisis catalyzing innovation and the re-direction of human activities towards a fundamentally new direction. Today, we might say that each caused a tipping point that led to new development and behavioral pathways.

The COVID-19 pandemic, one of the greatest threats to human societies in recent memory, can be seen as a similarly catalytic event. While history does not repeat itself, there are many similarities in the response strategies to earlier pandemics such as the Black Plague of the middle ages and the Spanish Flu of the 1920s, including policies of ‘social distancing’ and isolation and barriers of entry to those from ‘outside’. Even the word quarantine (meaning ‘forty days’ in Venetian) was first coined during the plague epidemic of the 14th century.

Photo by Cheng Feng on Unsplash

Today’s crisis, as in the past, has revealed the worst parts of our nature, as with the callous exclusion of the needy, homeless, and migrants from the emerging responses, as well as the hoarding of perceived scarce goods by the well-off. At the same time, the pandemic has brought out some of the best human characteristics: self-sacrifice in helping others, renewed empathy and solidarity, and unprecedented global cooperation within science and between governments as we work to stem the worst of the pandemic.

Moreover, there is mounting evidence that the partial shut-down of the global economy has had demonstrably positive effects on the environment, such as reduced emission levels, lower pollution, and a resurgence in wildlife. While an economic depression is by no means a viable mitigation strategy for climate change and other pressing environmental issues, these data make clear that the right policies and priority investments in STI could have immediate and significant effects in our efforts to transition to a sustainable world.

Many scientists, policymakers, and other stakeholders are already working to leverage this current moment of opportunity into lasting change. , a global research agenda aiming to help reach the United Nations’ Sustainable Development Goals, offers six transformations that outline essential STI, institutional, and behavioral synergies to achieve the new direction for human development while providing critical support for the most vulnerable among us. The , a group of leading scientists convened by , is working to underpin the development of science-based targets for systems like land, water, and biodiversity in order to guide companies and cities towards sustainable pathways, as many thought leaders are beginning to reconsider the stability and efficiency of our current economic systems. Thomas Piketty, for example, has that every person should receive $120,000 at age of 25 to enable innovative initiatives among those who lack the capital to do so. Bold efforts like these will become increasingly necessary as we work towards a new set of planetary operating parameters that will ensure an equitable and sustainable future for all.

Our response to COVID-19 could help redirect trillions of dollars towards this agenda. While current measures aim to preserve existing institutional and economic arrangements, we should press decision makers to actively channel these funds into the drivers of innovation to bring about the future we want to live in. This deep and ongoing crisis may destroy some of the ‘old’ characteristics of this moment in human history, and could bring about the transformations in sustainability that will enable us to build a better future for all life here on Earth. The risk is that exactly the opposite will happen — and that is a risk that humanity cannot afford to take.

This piece was originally published on Medium and Future Earth.

Note: This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.

How citizen science can fill data gaps for the SDGs

By Dilek Fraisl, researcher in the IIASA Ecosystems Services and Management Program and chair of the WeObserve SDGs and Citizen Science Community of Practice.

How can we address the data gaps for achieving the United Nations’ Sustainable Development Goals (SDGs)? What is the potential of citizen science to track progress on the SDGs as a new source of data? How can we harness citizen science data effectively for evidence-based policymaking and SDG achievement?

These were just some of the questions we had in mind when we started research into the contributions of citizen science to SDG monitoring at the Sustainable Solutions Development Network (SDSN) Thematic Research Network on Data and Statistics (TReNDS). We were aware that citizen science has a role to play, but we didn’t know what the extent of that role would be. We wanted to show where exactly the real potential of citizen science lies in the global SDG indicator framework and also to understand what we can do to bring all the key players together to fully realize this potential.

This research led to our paper “Mapping Citizen Science Contributions to the UN Sustainable Development Goals”, which was recently published in the journal Sustainability Science.

© Litter Intelligence by Sustainable Coastlines

Our most remarkable finding was that citizen science could contribute to the achievement of all 17 Sustainable Development Goals (SDGs) by  providing data for 33% of all SDG indicators. There are currently 247 SDG indicators that are defined in an evolving framework that includes 17 goals and 169 targets. This has huge potential.

We first investigated the metadata and work plans of all the SDG indicators and then searched for citizen science initiatives at global, national, and even local scales that could potentially contribute data to the monitoring of these indicators. This work was carried out with volunteer members of the SDGs and Citizen Science Community of Practice (SDGs CoP) that was launched a year and a half ago for the WeObserve project.

We also looked at the overlap between contributions from citizen science and earth observations in our study. Based on the mapping exercise GEO undertook of the 29 indicators identified, citizen science could support 24. This shows great potential for citizen science and earth observation approaches to complement each other. One example would be Picture Pile  ̶  a flexible tool that ingests imagery from satellites, unmanned aerial vehicles (UAVs), or geotagged photos for rapid assessment and classification.

In Picture Pile, the volunteers are provided with a pair of images taken at different times and asked whether they see any tree loss (to identify deforestation), damaged buildings after a disaster (for post disaster damage assessment), marine plastics (to understand the extent of plastics problem), or to assess levels of poverty (to map poverty), among others. Picture Pile combines earth observation and citizen science approaches that could be used for monitoring some SDG indicators. To name but a few: 1.5.2 Direct economic loss attributed to disasters in relation to global gross domestic product (GDP); 11.1.1 Proportion of urban population living in slums, informal settlements, or inadequate housing; 14.1.1b Floating plastic debris density; and 15.1.1 Forest area as a proportion of total land area. Exploring and realizing this potential of citizen science and earth observation is one of our priorities at the GEO Community Activity on Citizen Science (GEO-CITSCI).

Thanks to this study, we now know which initiatives could be leveraged to contribute to SDG monitoring, and we have the groundwork to show to project teams, National Statistical Offices, and custodian agencies to start discussions around how to realize it fully.

The SDG indicators where citizen science projects are “already contributing” (in green), “could contribute” (in yellow) or where there is “no alignment” (in grey). The overall citizen science contributions to each SDG are summarized as pie charts. Black borders around indicators show the overlap between citizen science and EO, as identified by GEO (2017).

The Picture Pile application (both online and for mobile devices) is designed to be a generic and flexible tool for ingesting imagery that can then be rapidly classified by volunteers. Picture Pile, IIASA.

Another important finding of our work was that the greatest potential for citizen science  ̶  when existing and potential future contributions are combined  ̶  could occur respectively in SDG 15 (Life on Land), SDG 11 (Sustainable Cities and Communities), SDG 3 (Good Health and Wellbeing), and SDG 6 (Clean Water and Sanitation). This shows that citizen science has the greatest potential for input to the environmental SDG indicators.

Of the 93 environmental indicators in the SDG indicator framework identified by the United Nations Environment Programme (UNEP), citizen science could provide inputs for 37 (around 40%) indicators. As 68% of these environmental SDG indicators lack data, again identified by UNEP, also given that we only have 10 years left to achieve the SDGs, we need to start thinking about how to leverage this potential citizen science offer for SDG monitoring.

In order to effectively monitor and ultimately achieve the SDGs, traditional ways of data collection such as censuses or household surveys will not be sufficient. Additionally, they will also be too expensive to cover the wide range of the SDGs with its 169 targets and 247 indicators on a regular basis. We urgently need to act on the results of this study, and to utilize the potential of new ways of data collection such as citizen science, if we are to achieve the SDGs by 2030, but how? Where do we start?

We need to keep working on demonstrating the value of citizen science in the global data ecosystem through initiatives such as the WeObserve the SDGs CoP, building partnerships around citizen science data involving all the stakeholders, and encouraging investment to leverage the use of citizen science data for the SDGs. We should develop case studies and success stories about the use of citizen science by NSOs and design the citizen science initiatives with NSOs and other government agencies to ensure that their data quality requirements are met.

I believe it is important to mention that citizen science is not only a source of data that could fill gaps, but it is also a great way to mobilize action and get everyone on board to play their part in addressing the world’s greatest challenges by engaging the public in scientific research. Working together, we can harness the potential of citizen science to achieve the UN Sustainable Development Goals (SDGs).

This post first appeared on the Group on Earth Observations (GEO) blog.

Note: This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.