Strengthening the resilience of our global food system while advancing its transformation

By Frank Sperling, Senior Project Manager in the Integrated Biosphere Futures Research Group of the IIASA Biodiversity and Natural Resources Program

Frank Sperling shares his reflections on issues around sustainable and transformational food production in the context of the UN Food Systems Summit.

© Solarseven | Dreamstime.com

Bringing together stakeholders from around the globe, the United Nations Food Systems Summit (UNFSS) calls attention to the opportunities, challenges, and promises that the transformation of our food systems can hold to advance sustainable development.

This transformation needs to happen, while the ongoing Covid-19 pandemic reminds us of the manifold vulnerabilities embedded in our food systems, the inter-dependence of our societies, and the entanglement of human and natural systems. The increases in weather and climate extremes that can clearly be attributed to climate change, ongoing biodiversity loss, environmental degradation, and pollution further illustrate that food systems need to manage a broad range of compounding risks and pressures that play out over different spatial and temporal scales. Advancing and securing gains towards the Sustainable Development Goals (SDGs) will not only require meeting multiple economic, social, and environmental objectives, but also demand pathways that ensure a safe navigation through a treacherous and shifting risk landscape. But how do we build resilience into the food system while transforming it at the same time?

Great strides have been made in technologies and practices that can help food systems manage existing and emerging risks. For example, on the production side, timely access to seasonal forecasts and early warning information coupled with extension services can help farmers to make the right decisions for planting and to anticipate, adapt, and cope with possible shocks. Precision agriculture, which harnesses advances in technology to ensure optimal health and productivity of crops and soils, can reduce the need for inputs. Diversification of livestock and agricultural traits can help farmers to reduce production risks in marginal environmental conditions.

Minimizing the spillover risk of zoonotic diseases, mitigating, and adapting to climatic and environmental changes place additional demands on food systems, but also offer new opportunities. Living sustainably requires comprehensively managing land use, enabling for food production, but maintaining and recovering critical ecosystem goods and services, such as carbon and biodiversity. It requires advancing nature-based solutions, where nature is seen as an ally and not an adversary in delivering on development objectives. Strengthening natural capital accounting and incentivizing environmental stewardship by rewarding actors in the food system for efficient and sustainable management of natural resources, and appropriately informing consumer choices will be important ingredients in reducing the environmental impact as well as environmental vulnerabilities of food systems.

The transformation of the food system is an ongoing process. It is therefore important to understand the impact of different changes across the system. Shifts to healthier diets can have important co-benefits in reducing pressure on the environment and natural resources. Such transformation implies, however, that shifts in demand are also matched by shifts in supply, reflecting appropriate adjustments of agricultural production. To accommodate such system shifts and facilitate system transitions over time, the social resilience and adaptive capacity of society must be addressed accordingly.

Food systems operate at different scales, ranging from local to global. Consequently, the role of trade in ensuring food security and human welfare across a range of contexts is critical. Several countries are already dependent on food imports. Trade can help the food security of regions where agricultural activities become less viable with progressive climate change. At the same time, the changing exposure to socioeconomic and environmental risks arising from the increasing inter-connectivity of societies and economies also need to be addressed, as illustrated by the current pandemic. The evolution of food systems has been largely shaped by a drive for efficiency. We must now consider carefully where efficiency needs to be (counter)balanced with an effort to promote greater diversity, and where we must build in greater redundancy to help manage the variety of risks facing food systems.

Forward-looking approaches aimed at transforming food systems towards greater resilience and sustainability will require a suite of measures within, as well as outside food systems. Such measures entail helping livelihoods and sectors to reduce their vulnerabilities and risk exposure, while also enabling the agility of food systems to manage future risks, avoiding lock-in of structures, which would become mal-adaptive over time. Achieving such transformation will depend on increased collaboration and trust building across sectors, enabling innovation in technologies and practice, strengthening of training and capacity development, and on the improvement of safety nets for reducing vulnerabilities to shocks and managing the social transition. Above and beyond, it requires re-calibrating the connection of food systems with other sectors and systems, such as health, environment, energy, and infrastructure.

The UNFSS in conjunction with the upcoming UN Climate Change Conference in Glasgow (UNFCCC COP26), and the UN Conference on Biological Diversity in Kunming (CBD COP15), are a formidable call to action for political leaders, decision makers in the public and private sectors, scientists, development practitioners, civil society, and to society at large, to come together and jointly imagine and build resilient and sustainable food systems that place people and nature at the center before it is too late.

This blog post was first published on the website of the International Science Council. Read the original article here.

Note: This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.

Why we need basic sciences for sustainable development more than ever

By Michel Spiro, President of the International Union of Pure and Applied Physics (IUPAP) and President of the Steering Committee for the proclamation of the International Year of Basic Sciences for Sustainable Development in 2022 (IYBSSD 2022)

A consortium of international scientific unions and scientific organizations’ plans to declare 2022 the International Year of Basic Sciences for Sustainable Development are underway. Michael Spiro makes the case for why the world needs this now more than at any time in the past.

© Dmytro Tolokonov | Dreamstime.com

For almost a year and a half now, the world has been disrupted by the COVID-19 pandemic caused by the SARS-CoV-2 virus. But how much worse could the situation have been without the progress and results produced for decades, even centuries, by curiosity-driven scientific research?

We deplore the many deaths due to COVID-19, and the future is still very uncertain, especially with the detection of new variants, some of which are spreading more quickly. But how could we have known that the infection was caused by a virus, what this virus looks like and what its genetic sequence and variations are without basic research?

Viruses were discovered at the beginning of the 20th century, thanks to the work of Frederick Twort, Félix d’Hérelle, and many others. The first electron microscope was built in the 1930s by Ernst Ruska and Max Knoll; and DNA sequencing began in the mid-1970s, notably with research by the groups of Frederick Sanger and Walter Gilbert.

Such a list could of course go on and on, with basic research at the root of countless tests, treatments, vaccines, and epidemiological modeling exercises. We even owe high-speed, long-distance communications, which allow us to coordinate the fight against the pandemic and reduce interruptions in education, economic activities, and even the practice of science, to the discovery and study of electromagnetic waves and optic fibers during the 19th century, and the development of algorithms and computers codes during the 20th century. The COVID-19 pandemic is a reminder (so harsh and brutal that we would have preferred to have been spared) of how much we rely on the continuous development of basic sciences for a balanced, sustainable, and inclusive development of the planet.

On many other issues, basic sciences have an important contribution to make to progress towards a sustainable world for all, as outlined in Agenda 2030 and its 17 Sustainable Development Goals, adopted in September 2015 by the United Nations General Assembly. They provide the essential means to address major challenges such as universal access to food, energy, and sanitation. They enable us to understand the impacts of the nearly eight billion people currently living on the planet, on the climate, life on Earth, and on aquatic environments, and to act to limit and reduce these impacts.

Indeed, unlike our use of natural resources, the development of the basic sciences is sustainable par excellence. From generation to generation, it builds up a reservoir of knowledge that subsequent generations can use to apply to the problems they will face, which we may not even know about today.

The International Year of Basic Sciences for Sustainable Development (IYBSSD) will focus on these links between basic sciences and the Sustainable Development Goals. It is proposed to be organized in 2022 by a consortium of international scientific unions and scientific organizations* led by the International Union of Pure and Applied Physics (IIUPAP) with the recommendation of a resolution voted by the UNESCO General Conference during its 40th session in 2019. Over 50 national and international science academies and learned societies and around 30 Nobel Prize laureates and Fields Medalists also support this initiative. The Dominican Republic has agreed to propose a resolution for the promulgation of the IYBSSD during the 76th session of the United Nations General Assembly, beginning in September 2021.

We very much hope that scientists, and all people interested in basic science, will mobilize around the planet and take this opportunity to convince all stakeholders – the general public, teachers, company managers, and policymakers – that through a basic understanding of nature, inclusive (especially by empowering more women) and collaborative well-informed actions will be more effective for the global common interest. As IIASA is one of the consortium’s founding partners, we especially invite all IIASA scientists, alumni, and colleagues they are collaborating with to create or join national IYBSSD 2022 committees to organize events and activities during this international year.

More information, as well as communication material, can be found at www.iybssd2022.org. This will also be shared through social media accounts (look for @iybssd2022 on Facebook, Twitter, LinkedIn and Instagram). You are also invited to subscribe to the Newsletter here.

* Consortium members

The International Union of Crystallography (IUCr); the International Mineralogical Association (IMA); the International Mathematical Union (IMU); the International Union of Biological Sciences (IUBS); the International Union of Geodesy and Geophysics (IUGG); the International Union of Pure and Applied Chemistry (IUPAC); the International Union of History and Philosophy of Science and Technology (IUHPST); the International Union of Materials Research Societies (IUMRS); the International Union for Vacuum Science, Technique, and Applications (IUVSTA); the European Organization for Nuclear Research (CERN); the French Research Institute for Development (IRD); the International Institute for Applied Systems Analysis (IIASA); the European Physical Society (EPS); the Joint Institute for Nuclear Research (JINR); the Nuclear Physics European Collaboration Committee (NuPECC); the International Centre for Theoretical Physics (ICTP); the International Science Council (ISC); Rencontres du Vietnam; the Scientific Committee on Oceanic Research (SCOR); the Square Kilometre Array Organization (SKAO); and  SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East).

Note: This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.

Solutions providing multiple resilience dividends require an integrated approach

 

Disaster Risk Reduction investments bring a wide variety of benefits, including economic, ecological, and social, but in practice these multiple resilience dividends are often not included in investment appraisals or are not recognized by those making funding decisions. How do we change this?

Research led by the London School of Economics and Political Science with IIASA and Practical Action published in the Working Paper Multiple resilience dividends at the community level: A comparative study on disaster risk reduction interventions in different countries highlights the need for an integrated decision-making framework to overcome the challenges.

The negative effects of disasters on people and communities are varied and far reaching, and will only get worse as climate change make floods and other natural hazards more frequent, severe, and unpredictable. Disasters lead to loss of lives, assets, and livelihoods, they undermine or destroy development progress. Since 2000 climate related hazards have caused $2.2 trillion of losses and damages and have affected approximately 3.9 billion people globally.

With investments in disaster risk reduction (DRR), where community resilience is enhanced these negative impacts can be reduced and savings can be made. It’s more cost effective to invest in pre-event resilience than post-event response and recovery.

So why is disaster risk reduction so difficult to finance?

The problem with estimating the direct benefit of disaster risk reduction interventions is that you only see the benefits when an event which would otherwise have turned into a disaster occurs and is successfully mitigated.

This makes cost-benefit analysis and other decision-making methods difficult to carry out, and makes the costs of doing something more aligned to the probability of the event, rather than the lives and economic costs saved, thus changes to policy and practice are slow to materialize.

What are the multiple dividends of resilience?

The multiple dividends of resilience refer to positive socioeconomic outcomes generated by, and co-benefits of, an intervention beyond, and in addition to, risk reduction.

It’s an approach aimed at making DRR investments more attractive as the multiple dividends of an investment may help identify win-win-win situations (as well as trade-offs), even if no hazard event occurs. Co-benefits can be intended, or unintended.

As framed by the Triple Resilience Dividend concept these benefits can be divided into three categories:

1. The avoided losses and damages in case of a disaster

For example, how bio-dykes in Nepal prevent river bank erosion, which reduces the risk of flooding, and associated sand deposits that ruin the fertility of agricultural land.

2. The economic potential of a community that is unlocked through the intervention

This includes ecosystem-based adaptation solutions in Vietnam where mangrove plantations create new habitats for fish, leading to improved livelihood opportunities for those making their living from fishing.

3. Other development co-benefits

Transition to solar stoves in rural Afghanistan does not only protect natural capitals from degradation, but also empowers women and girls, reduces in-house smog pollution, and fosters technological innovations.

Rongali next to his community’s bio-dyke. Photo by Sanjib Chaudhary, Practical Action.

What are the challenges?

The triple resilience dividend approach is often linked to new and innovative solutions like ecosystem based adaptation, where the benefits can be wider, but when and how they will materialize is more uncertain than with traditional, hard infrastructure solutions.

Although many developing countries have policies that align DRR, climate change adaptation, and sustainable development, sadly, in practice, local decision makers assume that multiple resilience dividends will only accumulate over the long term. This often leads them to select traditional, hard infrastructure solutions that offer quick and more visible protection.

We need more success stories. Pilot interventions can be shared and shown to community members and decision makers to overcome their skepticism but this require better and more comprehensive evidence than we have today.

We also lack decision-making frameworks that can include and monitor multiple resilience dividends. Frameworks that support planners as they navigate the decision-making process, and help generate the evidence needed.

Community members in the Peruvian Andes working at a local tree nursery. Photo by Giorgio Madueño , Practical Action

How do we overcome these challenges?

The solution suggested in Multiple resilience dividends at the community level: A comparative study on disaster risk reduction interventions in different countries is an integrated decision-making framework that allows to systematically include, appraise, implement, and evaluate individual resilience dividends at each stage of the decision-making process.

Application and relevance matters.

As we suggest, instead of maximizing resilience dividends based on a specific, one dimensional, metric (e.g., monetary benefits) decision-making approaches need to identify those dividends that are most needed and demanded by the community and the solutions, novel or local in nature, best suited to generate these.

A structured approach in combination with participatory decision making allows for a tailored approach where community buy-in is achieved by prioritizing the resilience dividend(s) that matter most to them, while at the same time contributing to the evidence base for multiple resilience dividends.

This is urgently needed to highlight the fundamental challenges with the existing planning and decision-making system and therefore generate demand to deliver more effective solutions at scale.

Cleaning waste from river in Penjaringan Urban Village, Jakarta, Indonesia. Photo by Piva Bell, Mercy Corps.

Read the working paper this blog is based on here.

This blog post first appeared on the Flood Resilience Portal. Read the original post here.

Note: This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.

Learning from COVID-19 and upgrading sustainable governance

By Husam Ibrahim, International Science Council (ISC)

The IIASA-ISC Enhancing Governance for Sustainability Report identifies the lessons learnt from the ongoing COVID-19 pandemic in relation to upgrading risk governance.

Credit: Adam Islaam – IIASA

As some governments and their administrations, individuals, and science systems begin to adapt to COVID-19, the struggle still continues in many countries. With that, the world is slowly leveraging the insights this pandemic has offered, standing at the cusp of a new world, which faces multiple stressors and is in need of more resilient governance.

Globally, national governments were put under the microscope. Some, such as Singapore and South Korea, succeeded with evidence-based, swift national leadership coupled with clear crisis communication. This proved useful for containing the spread of the COVID-19 virus and with it brought necessary recovery initiatives. In other countries, such as the United States, tackling the crisis has been characterized by governance challenges, including crisis plans with layers of shared responsibility being ignored in favor of “management by panic” approaches.

The pandemic has highlighted the flaws of neoliberal governance that prioritizes economic growth, deregulation and a separation between people and nature ahead of policies centered around human and ecosystem health and wellbeing.

To this effect, the IIASA-ISC Enhancing Governance for Sustainability Report goes beyond just considering the roles and responsibilities of governments, and adopts a broader definition of governance as, “the totality of actors, rules, conventions, processes, and mechanisms concerned with how relevant…information is collected, analyzed and communicated, and how management decisions are taken”.

In a world confronted with future risks such as spiraling climate change, ecosystem collapse and dwindling resources, global governance needs to be reformed.

The report states that the global community needs to engage in multi-directional and more integrated learning, problem identification and decision making. This should enable the shift towards more sustainable and equitable development in an ever-riskier world.

A disease with no respect for borders requires a collective response, said Volkan Bozkir, President of the United Nations General Assembly, adding that, “COVID-19 is a practice test that exhibits our weaknesses; we must build resilience now for whatever comes tomorrow.”

The pandemic highlighted widespread global fragmentation, which was initially observed through uncoordinated and sometimes competing actions. The report explains that organizations and agencies with similar objectives fought over resources, when instead they should have been bridging their divides and working cooperatively to eliminate competition. In the meantime, as the divide is bridged, special crisis provisions should be established for activation in case urgent action is needed again.

The report also recommends strengthening science–policy interactions to enable evidence-based decision-making, in which science systems collaborate with governments at all governance levels. Global and regional collaboration is especially important given the uneven scientific capabilities across countries and the need to tackle the pandemic everywhere to achieve health outcomes for all.

Working effectively at the interface of science and policy has been a challenge for many countries, which warrants further investigation. However, scientists have tried to step up to the challenges in some unprecedented ways.

For example, online repositories started publishing COVID-19 studies as pre-prints so that their findings could be used by all scientists quickly. As a result, researchers have identified and shared hundreds of viral genome sequences, and several hundreds of clinical trials have been launched, bringing together hospitals and laboratories around the globe.

Mukhisa Kituyi, the Secretary-General of the United Nations Conference on Trade and Development, referred to international scientific collaboration in reference to COVID-19, as the “engine of global science” and said, “It is thus crucial that scientific responses are based on international collaboration that brings together the best minds and available data from different countries for the benefit of all”

Therefore, to reform global governance, evidence-sharing arrangements need to be centered on a global level with reliable evidence, which must be made available swiftly in times of crises. In order for this to happen, the report recommends the creation of specialized advisory bodies that offer consultations on a regular and on-demand basis. The report also suggests involving diverse stakeholder perspectives in these consultations.

Another key point to enhancing sustainable governance is risk reduction management, which should be a fundamental component of decision-making and a part of the investment in sustainable development. The report states that a global socio-ecological resilience and risk dialogue should be launched, engaging policymakers, civil society, the private sector, and the scientific community in mapping risks and their drivers at different scales and discussing their implications for risk governance, prevention and preparedness. Such an engagement process would increase the understanding and communication of the compound, systemic nature of risks driven by infectious diseases, climate change, and other socio-ecological stressors.

“A more holistic approach to risk that better takes into account the many intricate links between nature and people is sorely needed if we are to achieve the Sustainable Development Goals.”

– Anne-Sophie Stevance, ISC

Unifying fragmented global organizations and governance, forming scientific evidence-based policies with the help of science systems, and enhancing levers pertaining to risk management are only some of the recommendations in the report. For more information on upgrading risk governance read the IIASA-ISC Enhancing Governance for Sustainability Report.

You can also watch the discussion on Learning from COVID-19 and upgrading sustainable governance as part of the launch event for the Bouncing Forward Sustainably: Pathways to a post-COVID World initiative, which explores the key themes of Sustainable Energy, Governance for Sustainability, Strengthening Science Systems, and Resilient Food Systems.

 

This blog post was first published on the website of the International Science Council. Read the original article here.

Note: This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.

How we count energy poverty is broken, requires new framework

By Shonali Pachauri, Research Group leader, Transformative Institutional and Social Solutions

Shonali Pachauri discusses a new framework developed at IIASA to more accurately identify the energy poor.

PowerForAll

Energy is a prerequisite for economic and social development. Today, it is widely believed that there are 840 million people still living without electricity in Africa and Asia, while many more are without access to reliable power. And because of COVID-19, this number is growing again.

But what if this data, which governments and donors rely on to allocate money and shape policy, are flawed? And what if we’re even further from eradicating energy poverty than we think? This is the conclusion of a new framework for counting energy access.

The United Nations uses a simple indicator of the share of population with electricity connections to measure energy access. But this grossly underestimates the number of energy poor, because it considers a household to have access even if they receive irregular quality and hours of electricity supply or are unable to afford anything beyond an electric light.

Recent efforts to improve how we measure energy poverty have made vast improvements but have now resulted in frameworks that are complicated and “data needy”, therefore difficult to scale up to a global level.

A new framework developed by IIASA builds on existing measurement frameworks, but simplifies and advances these to more accurately identify the energy poor. It has already been applied to actual data from Ethiopia, India, and Rwanda to test how well it captures energy poverty in comparison to the World Bank’s Multi-Tier Framework (MTF).

The framework distinguishes between two aspects of access: the quality of power supply and the circumstances of the end-user. This distinction is important to better direct policy efforts where they are most needed, that is, to energy suppliers and/or to households. It also reduces the number of dimensions and tiers to simplify the MTF.

Instead of correlating energy consumption with energy access, a key advancement of the new framework is using ownership of different types of appliances as a proxy for measuring household amenities and services derived from the use of these appliances to improve wellbeing. Electricity consumption is a misleading measure of energy service, because for those who use inefficient appliances, more consumption does not translate into more service. For instance, a household using six inefficient light bulbs is not better off than one that uses three efficient high luminosity light points and an efficient fan that provides comfort from the summer heat. The framework also improves on how affordability is measured to consider appliance purchase costs in addition to recurrent electricity expenditures in assessing the budget share spent on electric services.

When applied to real data, the framework suggests that the energy poor are more segmented than what is reflected by existing binary or MTF indicators. The categorization of households according to electricity consumption differs markedly from that according to energy services and using appliance ownership, revealing greater heterogeneity among the energy poor than what is reflected in the MTF’s consumption-based indicator.

In addition, the new framework shows that affordability is even more of a constraint to gaining access to modern electric services for households in Ethiopia, India, and Rwanda than reflected by the MTF. According to the MTF’s indicator of affordability, practically no one in Ethiopia or India would be considered unable to afford electricity access. However, if one includes the discounted cost of appliances needed to consume electricity in the indicator, about a third of the population in India and Ethiopia might be categorized as facing issues with affordability. In Rwanda, even without considering the discounted cost of appliances, most electricity consuming households are faced with affordability constraints to using basic electric services at home.

This evolution of measuring energy access is just a first step to more accurately counting the energy poor. This needs to go hand in hand with better data gathering, especially for countries and regions that face the biggest challenges in terms of extending access to modern energy services. Further refinements and applications of the framework can help improve how we identify the most vulnerable and design and target policies to achieve true energy access for all.

This blog post was first published on the PowerForAll Energy policy website. Read the original article here.

Note: This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.

The footprint of COVID-19 on carbon emissions and future work at IIASA

By Greg Davies-Jones, 2020 IIASA Science Communication Fellow

Greg Davies-Jones finds out how COVID-19 has lightened the carbon footprint of IIASA and uncovers how the institute plans to integrate climate protection and sustainability into everyday research activities.

The impact of COVID-19 has been profound and pervasive, infiltrating deeply into many spheres of society. IIASA has not escaped the clutches of the pandemic either: The phrase ‘unprecedented times’ has become just as commonplace here at the institute as it has across the globe. Despite the overt and all too evident adverse consequences of COVID-19, there is a significant, albeit only temporary, positive aspect of a lockdown existence, namely a reduction in carbon dioxide (CO2) emissions.

At IIASA, the principal decline in CO2 emissions has been due to the drop-off in business travel. With individual mobility heavily restricted, travel arising out of research activities, meetings, and conferences has dropped to almost zero. To fill the void, the virtual world is rapidly becoming the everyday reality: Zoom calls, Skype meetings, audio hiccups, video glitches, and the occasional gallivanting toddler have fast become the norm in this new working world.

Schloss Laxenburg | ©IIASA

In the years to come, when the COVID-19 cobwebs are finally blown away (hopefully), might this new working world become more commonplace? A hybrid between the pre-COVID-19 and post COVID-19 worlds perhaps? One thing is certain: The continuation of business-as-usual will be catastrophic environmentally. A recent climate poll documented in The Guardian found despairingly that people are planning to drive and, in some cases, even fly more in the future than before the coronavirus pandemic. The dangerous inference that could be drawn from this is that, rather than merely a disconnect between individual actions and outcomes, there are conscious choices being made that are increasingly recognized as being highly inimical to the continued existence of most life forms on this planet.

Given the global shock to the economy, cost will also be a key factor influencing decisions in the post COVID-19 world. Virtual conferencing is pre-eminently a cheaper alternative. Although not a perfect substitute for in-person meetings – it does come with advantages (e.g., lower resource requirements and better accessibility) as well as disadvantages (e.g., lacking informal exchanges).

“Another aspect is inclusivity  ̶  virtual conferencing affords people the opportunity to engage with relative ease (provided they have a sound internet connection), irrespective of their geographical location,” explains IIASA researcher Caroline Zimm.

Fellow researcher, Benigna Boza-Kiss, continues: “The virtual working world can be fruitful and effective, but we must be more strategic in how it is organized. Structured meetings with specific objectives planned in advance will allow for ineffectual activity and call-times, which similarly generate emissions, to be reduced.”

Notwithstanding these positives of a virtual working environment, there are some apprehensions, particularly regarding the impossibility of virtual platforms to meaningfully replicate certain types of social interactions, including those that occur outside structured sessions at conferences. Conversations beside the coffee machine, chinwags in the corridor, or even the post-work evening revelry – all such serendipitous moments and gainful interaction are considered invaluable in providing the ‘complete’ conference experience. Yet, the virtual world can offer other distinct advantages.

“In video calls and online conferencing platforms, it is not as daunting to ‘raise a hand’ or contact someone more senior. I have found that some people actually speak up more (often using the chat function) than they would in a physical conference setting. This means a shift in the networking dynamic and perhaps even greater inclusivity,” says Zimm.

The lightening of the carbon footprint of IIASA research ventures will likely be short-lived unless we make fundamental changes over the long-term. As the time window in which we can effectively act on climate change inexorably closes, it is imperative that we do more to attain the universal climate goals written into the Paris Agreement.

In light of this challenge, and considering the work of IIASA as a leader in environmental and sustainability studies, it feels appropriate to ask: Should the prevailing ethos of environmental institutes and practitioners therein openly acknowledge and embrace the responsibility to act as role models in reducing negative environmental impact? Put bluntly, should it be incumbent upon them to ‘walk the talk’? Are people more likely to respond to organizations and researchers that practice what they preach?

Many environmental institutes and researchers, at least nominally, would agree, but this purported espousal must be underpinned by concrete action. In 2019, IIASA joined forces with Climate Alliance Austria – an organization focusing on awareness-raising projects and activities to promote knowledge on climate issues and sustainable development. The IIASA-Climate Alliance mandate is to integrate climate protection and sustainability into everyday research.

To advance this philosophy, IIASA has formed an internal Environment Committee that focuses on nurturing more environmentally friendly processes and activities at the institute. To this end, the committee has organized an evaluation and is elaborating a strategy that includes developing Green Event Guidelines, powering IIASA with certified green electricity, and encouraging individual action with a ‘Bike to Work’ scheme.

For the most part however, these are all fledgling initiatives that require cultivation, top level support and leadership to ensure success. Moreover, these initiatives necessitate additional targeted and hard-hitting emission-mitigation strategies to avoid frustratingly commonplace ‘greenwashing’ and ensure decisive, positive internal climate action. More stringent measures, such as the institute’s proposed stricter sustainable procurement and travel policies, will arguably make a powerful and lasting contribution to this over-arching aim of “reconfiguring” IIASA as an employer that is doing all it can to implement and facilitate sustainable working practices for its entire workforce.

Note: This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.