Pessimism is not an option: The road to sustainable development

Interview with Naoko Ishii, CEO and Chairperson of the Global Environment Facility (GEF), an independent organization that provides grants for projects working towards sustainability. IIASA, the GEF, and the United Nations Industrial Development Organization (UNIDO) have recently partnered on a new project to explore integrated solutions for water, energy, and land.

Naoko Ishii ©Global Environment Facility

Naoko Ishii ©Global Environment Facility

Q What is sustainable development and why is it important?
As Brundtland put it, sustainable development meets the needs of the present without compromising the ability of future generations to meet their own needs.

If we do not achieve sustainable development, we will fail to provide even the barest essentials of life—food, water, and shelter—for the growing population. The extra two billion people that will inhabit the world in 2050 can only be accommodated if we are serious about sustainable development.

On a personal level I care about sustainable development because I care about the future, I care about young people, and I care about humanity. Achieving sustainable development is, in my opinion, the single most important issue we face today. Without it, all life on Earth is in jeopardy.

The Global Environment Facility (GEF) was created on the eve of the 1992 Earth Summit in Rio to assist in the protection of the global environment and promote sustainable development. The benefits of such an endeavor have only become clearer over time. It is no coincidence that in 2015 all nations of the world will adopt a set of sustainable development goals which place a strong emphasis on the “global commons,” and that in parallel we have a new global agreement on climate change within reach.

How do you see the world in 2050? What are your most optimistic and pessimistic visions?
I am an optimistic person so I will say that, by 2050, every government, every business, and every individual will take the environment into consideration in all their actions. By 2050, we will all be caring for the Earth, taking responsibility for the use of our planet’s resources, and building economies which will leave no one without dignity or necessary subsistence. We will live within safe planetary boundaries. Pessimism is not an option for me.

How can science help the world achieve sustainable development?
Science plays a critical role.  We need it to monitor the state of our resources, the impacts of our activities, and the progress being made.  Science can also help identify solutions. It can help encourage businesses to make smart decisions, for example, about saving money though energy efficiency, risk mitigation, and new revenue opportunities driven by innovation and new business models.

Sustainable development is a truly cross-cutting endeavor: it spans many sectors, from agriculture to economics, and transcends national boundaries. Science can play an important role by producing research that is integrated, cross-sectoral and international. In this way, synergies, co-benefits, and trade-offs can be explored in order to identify the smartest paths to achieving multiple sustainable development goals at the same time

©The GEF

“Sustainable development is a truly cross-cutting endeavor: it spans many sectors, from agriculture to economics, and transcends national boundaries.” ©The GEF

How do you see the role of Global Environment Facility in implementing the Sustainable Development Goals?
The GEF is uniquely placed to support the global commons—the planet’s finite environmental resources that provide the stable conditions required for a sustainable, prosperous future for all.  Our new strategy—GEF2020—lays out an ambitious vision for the GEF, aimed at addressing the underlying drivers of environmental degradation and delivering integrated, holistic, solutions. We are building on more than 20 years of experience providing support to over 165 countries. By working with national governments, local communities, the private sector, civil society organizations and indigenous peoples, we help find and implement integrated solutions to global challenges.

What are the advantages of a cross-sectoral and cross-border approach to identifying paths to sustainable development?
Many environmental challenges and threats to sustainable development do not respect borders.  Moreover, they are often interdependent, or share common drivers. For example, biodiversity loss and climate change is partly driven by unsustainable forest management, which is in turn connected to production of globally traded commodities like palm oil or soy. Problems like this require an integrated, cross-cutting approach.

Given the importance of cross-sectoral interventions, at the GEF we will be implementing a program of integrated approach pilot projects. We believe that these will help countries and the global community in tackling underlying drivers of environmental degradation. I am also very excited about a research program we have recently launched in partnership with IIASA and the United Nations Industrial Development Organization, focusing on development and implementation of integrated solutions to tackle the water-food-energy nexus.

Note: This article gives the views of the interviewee, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.

10 steps to removing carbon from the global economy

By Nebojsa Nakicenovic, Deputy Director General, International Institute for Applied Systems Analysis (IIASA), Austria (Originally published on the World Economic Forum Agenda Blog.)

Nebojsa Nakicenovic

Nebojsa Nakicenovic

Goal 7 of the Sustainable Development Goals is ambitious: Ensure access to affordable, reliable, sustainable and modern energy for all. This must be accomplished without compromising Goal 13: climate. This is achievable.

In spite of ups-and-downs and outright shocks in the global economy, some quite recent, the economic success stories of the industrialized countries are role models for the countries that are still developing. This puts the entire global community in the dichotomous position of needing to fire up the engine of growth, without producing the greenhouse gases it has been emitting since the beginning of the Industrial Revolution. What is the answer?

Very few questions in the complex area of energy and climate change can have a simplistic answer, but I am going to attempt one here: decarbonization, namely, drastic reduction of carbon dioxide and other greenhouse gas emissions per unit of economic activity.

Back in 1993, I wrote this:

“The possibility of less carbon-intensive and even carbon-free energy as major sources of energy during the next century is consistent with the long-term dynamic transformation and structural change of the energy system.”

My view in 2015 is the same; however, the scientific community 22 years later has a much better understanding of “the decarbonization challenge” and how it can be addressed. I will sketch out a 10-step approach to the removal of carbon from the global economy, but first I’d like to paint in a bit of the background.

Carbon dioxide is the main greenhouse gas and contributor to climate change. The largest source is our use of fossil fuels to drive development. Carbon dioxide emissions have increased exponentially since 1850 at about 2% per year, while decarbonization of the global economy is only around 0.3% per year.

The 2012 Global Energy Assessment, in which IIASA played a leading role, puts the current decarbonization rate at approximately six times too low to offset the increase in global energy use of about 2% per year. To meet the goal of the 2009 climate agreement (the Copenhagen Accord), namely, “the scientific view that the increase in global temperature should be below 2 degrees Celsius” to prevent dangerous anthropogenic interference with the climate system, global net emissions of carbon dioxide and other greenhouse gases will need to approach zero by the second half of this century, implying deep, deep decarbonization rates.

working oil pumps © Kokhanchikov | Dollar Photo Club

“Carbon dioxide is the main greenhouse gas and contributor to climate change. The largest source is our use of fossil fuels to drive development.” © Kokhanchikov | Dollar Photo Club

But we need deep decarbonization while energy needs are increasing to meet the demand of the developing world, including the three billion without access today to sustainable energy. All scenarios in the academic literature that lead to further economic development in the world, universal access to sustainable energy, and the stabilization of climate change to less than 2 degrees Celsius, anticipate deep and urgent decarbonization. Here’s my 10-point plan for doing that.

  1. Change attitudes
    Attitudes to energy use are based on many factors, from cultural norms to overall infrastructure design. We need much greater political will to affect a change in attitudes: it is critical that policy interventions should communicate to citizens the ethical notion of improved well-being and health now and for future generations of a zero-carbon economy. .
  1. Transform governance
    The transformation needed this century is more fundamental than previous transformations, like the replacement of coal by oil, because of the significantly shorter time needed to achieve it. Thus, government policies are essential, and are needed particularly in changing buildings codes, fuel efficiency standards for transportation, mandates for the introduction of renewables, and carbon pricing.
  1. Improve energy efficiency
    More efficient provision of energy services, or doing more with less, and radical improvements in energy efficiency, especially in end use, will reduce the amount of primary energy required and represents a cost-effective, near-term option for reducing carbon dioxide emissions, as well as having multiple benefits in different areas of life.
  1. Ramp up renewable use
    We can show that the share of renewable non-fossil energy from solar, wind, rain, tides, waves, and geothermal sources in global primary energy could increase from the current 17% to between 30% and 75%. In some regions it could exceed 90% by 2050, provided that public attitudes change and efficiency increases.
  1. Reduce global energy intensity
    The energy intensity in the industrial sector in different countries is steadily declining due to improvements in energy efficiency and a change in the structure of the industrial output. Far greater reductions are feasible by combining these improvements with adoption of the best-achievable technology.
  1. Use known technologies
    Carbon dioxide capture and storage (CCS), now being piloted, is a pathway that leads to decarbonization with continued use of fossil energy. It requires: reducing costs, supporting scale-up, assuring carbon storage integrity and environmental capability, and securing approval of storage sites. Nuclear energy could make a significant contribution in some parts of the world, or it could be phased out as, for instance, in Germany.
  1. Improve buildings
    Retrofitting buildings can reduce heating and cooling energy requirements by 50–90%; new buildings can be designed and built using close to zero energy for heating and cooling. Passive energy houses and those that produce energy onsite are another great opportunity to achieve vigorous decarbonization. In conjunction with compatible lifestyles oriented toward rational energy use, efficient buildings are an important decarbonization option.
  1. Cut transport carbon
    A major transformation of transportation is possible over the next 30–40 years and will require improving vehicle designs, infrastructure, fuels and behavior. Electrically powered transportation reduces final energy use by more than a factor of three over gasoline-powered vehicles. A shift toward collective mobility is an essential option. This also implies behavioral changes and new business models like car-sharing, and self-driving cars to replace individual mobility.
  1. Clean industrial processes
    Overall, global industry efficiency is only 30%. Improved energy efficiency in industry results in significant energy productivity gains and, in turn, improved productivity boosts employment and corporate competitiveness. A shift toward low to zero emission energy sources in industry is another important and much-needed change. For example, with an aggressive renewables strategy, near-zero growth in GHG emissions in the industrial sector would be possible. Finally, decarbonization would also involve changes of industrial processes, for example, from high to low temperatures.
  1. Stranded assets and ‘derisking’ renewables.
    The flow of investment needs to be changed away from fossil fuels and toward efficiency, renewables, decarbonization of fossil energy sources, and especially efficient end-use in buildings, transport, and industry. Sustainable energy futures require relatively high up-front investments with the benefit of low long-term costs. They are attractive in the long run, but the up-front investments need derisking and other forms of support, such as feed-in tariffs.

Note: This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.

Making ends meet: Negative emissions for climate stabilization

By Sabine Fuss, Mercator Research Institute on Global Commons and Climate Change (MCC) and IIASA Ecosystems Services and Management Program

The Sleipner CCS plant in Norway was the world's first commercial CO2 storage facility. Photo: Kjetil Alsvik/Statoil

The Sleipner CCS plant in Norway was the world’s first commercial CO2 storage facility. Photo: Kjetil Alsvik/Statoil

Current strategies for limiting climate change to no more than 2°C above pre-industrial levels are centered around a shift towards less carbon-intensive technology, increases in energy efficiency, and changes in management and behavior.

This won’t be enough.

Global carbon dioxide concentrations have exceeded the benchmark of 400ppm, and it is clear that we’re headed for an overshoot. This means that to have a chance of stabilizing climate change below 2°C, we will actually need to extract greenhouse gases from the atmosphere, thus achieving what we call “negative emissions.” This is even more evident when we look at continued population growth, our dependence on existing infrastructure in the near future, and rising living standards in many emerging regions.

In a session on negative emissions at this year’s CFCC conference in Paris jointly organized by members of the Global Carbon Project at IIASA, MCC and CSIRO, and CO2-GEONET, a group of leading international researchers discussed the need for negative emissions and the implications of large-scale removal of CO2 from the atmosphere, and took a closer look at the outstanding questions and uncertainties on the topic.

Bioenergy with Carbon Capture and Storage (BECCS), and afforestation are two possibilities that could contribute to negative emissions, removing greenhouse gases from the atmosphere. © zlikovec |Dollar Photo Club

Bioenergy with Carbon Capture and Storage (BECCS), and afforestation are two possibilities that could contribute to negative emissions, removing greenhouse gases from the atmosphere. © zlikovec |Dollar Photo Club

A wide range of possibilities – but many open questions
The IPCC’s AR5 scenarios show that negative emissions could be achieved by combining carbon-neutral Bioenergy with Carbon dioxide Capture and Storage (BECCS), but also through afforestation. Most of the ambitious climate stabilization pathways show that we would need BECCS by the middle of the century, even though the removed emissions would not outweigh the remaining positive emissions at that point, that is, we would not yet see net negative emissions.

More precisely, the most recent scenarios of Integrated Assessment Models (IAMs) show that to achieve the 2°C limit, negative emissions of up to 13.2 GtCO2-eq./yr in 2100 are needed. This could be reached by BECCS, which might run into problems as competing for land with other demands, or a technology known as Direct Air Capture, which is more energy-intensive. Enhanced Weathering and afforestation might also deliver negative emissions, though of a smaller magnitude. However, all the presented negative emission technologies have their limits and none is a silver bullet. Clearly, there are more cards in the deck than just BECCS and we will have to aim for a portfolio respecting limits and trade-offs with other policy goals, but also opportunities and synergies.

One glaring clear point: negative emissions cannot be used to continue “business as usual” and then remove the bulk of the emissions mid-century. The required carbon flows would simply be too large. At the same time, such a high-emissions world would bring with it major environmental feedbacks, such as ocean acidification.  Thus, negative emissions have to be understood as just one element of a mitigation portfolio complementing drastic GHG emission reductions in the near term.

Many scenarios for limiting climate change require negative emissions by mid-century. Image: Global Carbon Project, 2014. http://www.globalcarbonproject.org/carbonbudget/

Many scenarios for limiting climate change require negative emissions by mid-century.
Image: Global Carbon Project, 2014.

While the large-scale use of biomass and its impacts have been at the center of bioenergy discussions for a while, CCS will also need to be scaled up to massive amounts of up to 25 GtCO2 per year by 2100. However, geology experts at the meeting were optimistic with respect to the storage potentials for these large amounts. The only challenge would be to find enough viable storage sites with assured capacity.

Other challenges include the need to investigate negative emission options that are not yet included in the AR5 scenarios, such as Enhanced Weathering, Direct Air Capture, and a method to improve CCS and BECCS with geothermal energy. How much the combined potential of these negative emissions options will indeed reduce temperatures also depends on the response of the climate system. However, two modelling teams presented new insights on reaction to overshoot, and negative emissions physically needed to keep global warming below 2°C.

While negative emissions are needed at large scale, many questions remain, which will need to be addressed very soon in order for scenarios meet reality. Communication must improve between scientists, politicians, practitioners, but also media and the public. Existing misunderstandings, for example, that negative emissions are just an excuse to continue on a business as usual pathway, or that negative emissions carry the same risks as geo-engineering, need to be resolved.

Read the full session report (PDF)

Sabine Fuss is leading the working group “Sustainable resource management and global change” at the Mercator Research Institute on Global Commons and Climate Change (MCC) in Berlin and holds a guest affiliation with IIASA’s ESM program. She is co-leading (with D. v. Vuuren) the research initiative “MAnaging Global Negative Emission Technologies (MaGNET)” hosted at the GCP Tsukuba Office

Note: This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.

Accounting for land use in EU climate policy

By Hannes Böttcher, Senior Researcher, Öko-Institut, previously in IIASA’s Ecosystem Services and Management Program

In or out?  Debit or credit? The role of the land use sector in the EU climate policy still needs to be defined

The EU has a target to reduce greenhouse gas emissions by at least 40% by 2030. This is an economy-wide target and therefore includes the land use sector, which includes land use, land use change and forestry. The EU is currently in the process of deciding how to integrate land use into this target. This is not an easy task, as we show in a new study.

© Souvenirpixels | Dreamstime.com

Land use includes activities, such as logging, that can release greenhouse gases into the atmosphere. But the sector also includes other processes that can remove greenhouse gases from the  atmosphere. Accounting for these processes is a complicated task. © Souvenirpixels | Dreamstime.com

The land use sector has several particularities that make it different from other sectors already included in the target, such as energy, industrial processes, waste, and agriculture. The most specific particularity is that the sector includes activities that cause emissions but also can lead to carbon being removed from that atmosphere, and taken up and stored in vegetation and soil. However, this removal is not permanent. Harvesting trees, and burning wood releases the carbon much more quickly than it was stored. Another particularity is that not all emissions and removals are directly caused by humans. This is especially true for removals from forest management.

In the past, the EU reported that uptake and storing of carbon through land use activities was higher than emissions from this sector. The European land use sector thus acted as a relatively stable net sink of emissions at around -300 to -350 Megatons (Mt) CO2 per year. But this might change in the near future: projections show the net sink declining to only 279 Mt CO2 in 2030.

Adding up carbon credits and debits
The emissions and removals that are actually occurring in the atmosphere are not exactly those that are currently accounted for under the Kyoto Protocol. Rather complicated rules exist that define what can be counted as credits and debits. Depending on how these rules develop, the EU sink may be accounted for to a large degree as a credit, or it could turn into a debit because the sink is getting smaller compared to the past. It is not likely that the entire sink will be turned into credits. Especially for the management of existing forests, which contributes a lot to the net sink, negotiators of the Kyoto Protocol have developed special accounting rules for the time before 2020. Under these rules, carbon credits only count if measured against a baseline.

The rules for the time after 2020 have not yet been agreed, however, as the Kyoto Protocol ends in 2020. In order to assess the impact of including the land use sector in the EU target in our new study, we had to make different assumptions, for example about how much wood we will harvest, the development of emissions and removals, and what the baseline for forest management should be. We then applied the existing Kyoto rules and alternative rules and assessed their impact on the level of ambition required to meet the EU’s target. It quickly became obvious: the assumptions we make and the rules we apply have very large implications for the 2030 Climate and Energy Framework.

One option of including land use discussed by the Commission is to take agriculture emissions out of the currently existing framework of the so-called ESD (an already existing mechanism to distribute mitigation efforts among EU Member States for specific sectors such as transport, buildings, waste and agriculture) and merge it with land use activities in a separate pillar. In our study we estimated the net credits that the land use sector could potentially generate, and found these credits could be as high as the entire emission reduction effort needed in agriculture. This would mean that in agriculture no reductions would be needed if the credits from land use were exchangeable between the sectors.

The impact on thannes-fighe target of 40% emissions reductions can be more than 4 percentage points if land use is included and the rules are not changed. This means that the original 40% target without land use would be reduced to an only 35% target. Other sectors would have to reduce their emissions less because land use seems to do part of the job. The target as a whole would thus become much less ambitious than it currently is. But this does not need to be the case. If accounting rules are changed in a way to account for the fact that the sink is getting smaller and smaller, land use would create debits. Including debits in the target would make it a 41% target instead and increase the overall level of ambition. This would be bad for the atmosphere because effectively emissions would not be reduced as much as needed.

It thus all depends on assumptions and rules. Before the rules are announced, the contribution of the land use sector cannot be quantified. Given this, we argue that the best option would be to keep land use separate from other sectors, give it separate target and design accounting rules that set incentives to increase the sink.

Reference
Böttcher H, Graichen J. 2015. Impacts on the EU 2030 climate target of inlcuding LULUCF in the climate and energy policy framework. Report prepared for Fern and IFOAM. Oeko-Institut.

Note: This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.

Countdown to zero?

By Nebojsa Nakicenovic, IIASA Deputy Director General/Deputy Chief Executive Officer (originally published in UNA-UK’s report: Climate 2020: Facing the Future)

Zero net global greenhouse gas emissions must become a reality before the end of the century if humankind is to stave off the worst effects of climate change. How can this be achieved?

This is a big year for embarking on transformational change towards a sustainable future for planet Earth. Three major global events are taking place, on financing and investments in Addis Ababa, sustainable development in New York and climate mitigation in Paris.

Energy futures are a major challenge on the way forward. In September the UN General Assembly in New York will focus on the Sustainable Development Goals (SDGs), which emphasise an enabling environment and economy for human development.

According to Kandeh Yumkella, Special Representative of the UN Secretary-General for Sustainable Energy for All (SE4All), the proposed SDG 7 on energy (‘Ensure access to affordable, reliable, sustainable and modern energy for all’) is “the golden thread that links poverty eradication, equitable economic growth and a healthy environment”.

SE4All calls for universal access to energy services, doubling the rate of energy intensity improvement and doubling the share of renewable energy, all by 2030. These goals are based on the Global Energy Assessment (GEA), coordinated by the International Institute for Applied Systems Analysis (IIASA) and the result of five years’ work by 500 experts worldwide.

The Paris climate meeting in December aims for a major climate agreement. What will it take? Photo Credit: Moyan Brenn via Flickr

The Paris climate meeting in December aims for a major climate agreement. What will it take? Photo Credit: Moyan Brenn via Flickr

The world is also going to have to introduce a workable, implementable scheme to stave off the possibility of runaway climate change, one with the objective of keeping the average global surface temperature increase to within 2°C over the pre-industrial average. It’s doable, but requires a high level of ambition to achieve immediate and vigorous emissions reductions.

The UN Climate Change Conference in Paris in December 2015 is aiming for – and will hopefully get – a climate agreement based on the 2°C limit that will be legally binding on every nation. To come near to achieving this target will require addressing energy systems, which is central to greenhouse gas emissions mitigation – 80 per cent of global energy is derived from fossil fuels. Limiting emissions will involve a major transformation of energy systems toward full decarbonization.

Stabilization scenarios
But we need to move urgently. IIASA research has shown that to meet the 2°C target and avoid dangerous climate change, emissions will need to peak by 2020. By 2050, they will have to be reduced by 30 to 70 per cent compared to today’s levels, and then they will need to go down to zero well before the end of the century.

The reason is that the amount of carbon that can be emitted in the future is limited if we are to restrict climate change to any given level. For example, to meet the 2°C target, humanity has a total carbon budget of some thousand billion tons of carbon dioxide.

This budget needs to be allocated along possible emissions pathways, which explains the need for achieving a peak as soon as possible followed by a decline to zero emissions. Should the emissions peak be late or decline rate too slow, humanity is likely to exceed the cumulative carbon budget. If this occurs, negative emissions would be required: namely, carbon removal from the atmosphere, so that excess emissions are offset rendering stabilization at 2°C possible despite an emissions overshoot.

The question is how could this be done. In stabilization scenarios, the negative emissions are achieved, for instance, by combining combustion of sustainable sources of biomass with carbon capture and storage (CCS). Both technologies are difficult from the current perspective and would require further development and vigorous deployment to reduce the costs and improve their performance.

CCS will presumably be developed anyway to decarbonize fossil fuels in those parts of the world where a transformation toward renewable, and possibly also nuclear, energy is delayed.

So we can decarbonize fossil fuels or switch to a higher percentage of carbon-free energy sources, such as many forms of renewable energy, to reduce and eventually eliminate emissions. What else can we do? GEA findings show that emissions could be reduced by up to half by efficiency improvements in energy, especially in end-use. This means looking at reducing emissions from areas such as transport, buildings, heating and cooling, urbanisation and electric appliances. It means changing mindsets, getting people and policymakers engaged in the emissions-reduction process.

Not all emissions come from sources that are judged to be a sign of development. In many developing countries, cooking over smoky fires burning traditional biomass (or coal) causes small particle pollution that adversely affects the health of women and children. IIASA research is analyzing how to introduce clean modern energy for cooking to millions of people and to cut indoor and outdoor pollution from these sources.

Improving air quality in cities with ground-level ozone, or smog (which results from chemical reactions between polluting compounds in the presence of sunlight), has clear synergies for human health, reducing cardiac, pulmonary and other diseases. It can increase human capital, too. One line of IIASA research shows that implementing a stringent climate policy could reduce globally aggregated lives lost due to indoor and regional air pollution by up to four million.

Sectoral interdependencies with respect to emissions are increasing. For example, reducing carbon and particle emissions to keep climate change in check has enormous implications for the food and water supply. Staggering amounts of water are needed to grow food but are also needed for sustaining energy systems. The productivity of land areas depends on climate and soil conditions. California is entering its fourth year of severe drought, raising concerns for agriculture and wildlife. Unsustainable water use in the state is draining aquifers containing ancient water that will take centuries to replenish.

All water systems – not simply those in traditionally arid or developing areas – are vulnerable to the changing climate. Reducing water use immediately reduces demand for electricity, as well as the fuels required to generate electricity. Water is needed to grow crops for biofuels, but fuel transport costs can be reduced by co-locating biofuel cultivation close to the communities that use them – another IIASA research result. Water can also produce plenty of hydroelectricity. Renewable energy technologies can be utilised to provide heat and electricity needs for water desalination. Water and energy use have almost boundless synergies and have to be analysed from an integrated perspective, which is why at IIASA examining the energy-water nexus is such a priority.

Complex problems
Stringent emission-reduction policies can also help to bolster the energy security goals of individual countries and regions. Such policies promote energy efficiency, the diversification of the energy supply mix and the increased utilisation of domestically available renewable energy sources. The result would be energy systems that are more resilient and simultaneously have a higher degree of sovereignty, especially compared to those so reliant on imports of fossil energy commodities, such as North America, Europe, Japan and, increasingly, China.

The international community has also woken up to the significance of climate-relevant emissions from deforestation and land degradation. The UN’s REDD+ initiative (reducing emissions from deforestation and forest degradation) is one of the more promising areas of agreement in global climate negotiations. Felling a tree always releases carbon, stored over its lifetime in its roots, leaves and branches. Large-scale deforestation therefore is a major contributor to carbon emissions. Nitrogen emissions from agriculture, wastewater management and industrial processes are also produced by human activities and need to be mitigated.

 Felling a tree always releases carbon, stored over its lifetime in its roots, leaves and branches. Large-scale deforestation therefore is a major contributor to carbon emissions.  Photo Credit: Curt Carnemark / World Bank

Felling a tree always releases carbon, stored over its lifetime in its roots, leaves and branches. Large-scale deforestation therefore is a major contributor to carbon emissions. Photo Credit: Curt Carnemark / World Bank

These are complex problems and huge investments are needed to solve the energy challenges society faces today. The ostensibly single aim of reducing emissions will, in fact, require a multiple paradigm shift affecting every domain simultaneously. There are many golden threads, and they are very entangled.

To fund the transformation to sustainable energy services for all, including the three billion ‘left behind’ without access and living at or below the poverty line, the Third International Conference on Financing for Development in Addis Ababa in July will need to dig very deep into its collective pockets. To transform the global energy system, the volume of investment will have to almost double over the next three to five decades, from about $1.3 trillion to some $2.5 trillion.

The money is available. Insurance and pension funds control $50 trillion. Governments can help catalyse other kinds of private investment by providing research and development and early deployment, and by helping to de-risk investment. The cost savings of these climate policy synergies are potentially enormous: $100-600 billion annually by 2030 in reduced pollution control and energy security expenditures (0.1-0.7 % of GDP) could be achieved by combining climate mitigation with combating air pollution rather than pursuing the two goals independently.

For emission reductions to be successful, these practical and financial considerations will need to be supported by a new ethical awareness that will temper our relationship with each other and our planet. Sustainability in every aspect of human life means a shift to equity and inclusion.

With the fast-growing population and the need for universal development, the requirement to control emissions is extremely urgent. The golden thread described by Yumkella with respect to the energy sustainable development goal encompasses the notions of both opportunity and fragility, but it binds us all.

Read the full publication: Climate 2020: Facing the future (PDF). 

Interview: Linking climate adaptation and mitigation

In a new study in the journal Climatic Change, IIASA Guest Research Scholar Mia Landauer explores the interrelationships between policies dealing with climate change mitigation and adaptation.

Why did you decide to do this study?
Adaptation and mitigation have been traditionally handled as two separate policies to combat climate change. We wanted to explore whether adaptation and mitigation can or should be considered together, because the implementation of the two policies takes place at different scales and the goals of the two climate policies are often considered distant from each other. We approached this question with a systematic literature review, because although such reviews are common in other research fields such as health sciences, there are only a few examples in social and environmental sciences. Ours was the first systematic analysis on how the interrelationships have been studied across different research fields and how these studies have conceptualized the issue.

The United Nation Headquarters complex in New York turns out their lights in observance of “Earth Hour,” in 2015. Credit: John Gillespie via Flickr

Cities are at the forefront of climate policy making and climate impacts. The United Nation Headquarters complex in New York turns out their lights in observance of “Earth Hour,” in 2015. Credit: John Gillespie via Flickr

What were the major findings of your study? What was new or unique?
We found that cities in particular should consider adaptation and mitigation together, because cities are in the forefront of climate policy making and urban actors have to negotiate trade-offs between the two climate policies across multiple scales. We found the highest number of publications on interrelationships between adaptation and mitigation from the field of urban studies.

Our systematic review provides knowledge on how synergies can be identified and conflicts avoided across different urban sectors and scales which is valuable for urban decision makers and planners when they have to consider climate policy making and planning practices.

Why are cities important when researching climate change adaptation and mitigation?
Our systematic review reveals that there is an increasing interest to study the interrelationships especially in cities, which face challenges of global change both in developing and developed countries. Especially under limited resources, integrated adaptation and mitigation strategies can provide a possibility to increase efficiency of cities’ responses to climate change.

A green wall in Paris shows just one example of building innovations to help mitigate climate change. Credit: Mia Landauer 2013

A green wall in Paris shows just one example of building innovations to help mitigate climate change. Credit: Mia Landauer 2013

What are the major conflicts and synergies you identified?
At the organizational scale, the trade-offs and conflicts we found between adaptation and mitigation showed up especially in urban policy and administrative processes, and allocation of resources. In practice, conflicts appear especially when there are competing land uses such as between public and private land. We also identified a number of synergies, which are indications of positive interrelationships. In practice, synergies can be found particularly in the building, infrastructure and energy sectors, with examples ranging from passive building design to urban greening and alternative energy options. In order to enhance synergies, changes in regulations and legislation, policy and planning innovations, raising awareness and cooperation between different actors and sectors should be considered.

How can this information be applied for policy making?
Integration of adaptation and mitigation can reduce vulnerability to climate change and help to implement climate policy and planning in a resource-efficient manner. Our analysis identified many opportunities that can be gained from integration of adaptation and mitigation. Especially in cities we find that it can be beneficial for decision makers and planners to consider adaptation and mitigation policies together, in order to avoid conflicts in planning practices and negotiate difficult trade-offs.

Reference
Landauer M, Juhola S, Soederholm M (2015) Inter-relationships between adaptation and mitigation: a systematic literature review. Climatic Change, Article in press (Published online 8 April 2015) http://dx.doi.org/10.1007/s10584-015-1395-1

Note: This article gives the views of the interviewee, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.