Better water, better jobs

By Taher Kahil, IIASA Water Program

This year’s theme of the UN World Water Day is “Water and Jobs.” It focuses on how adequate water management can change workers’ lives. Indeed, water management and job creation are tightly linked. Nearly all jobs depend on water, and without reliable and safe access to water, neither small activities nor major global industries can endure. Similarly, labor is necessary to build, maintain, operate, and manage the water system, and to run water-based projects. Furthermore, job creation can be a thirsty business in both developing and developed countries. In many developing countries irrigation projects, requiring significant amounts of water, are considered the main engine for the economy and source of employment. In developed countries, less water is needed but it still requires sufficient quality for manufacturing and service projects creating job opportunities.

© Albert Gonzlez Farran - UNAMID

(cc) Albert Gonzlez Farran – UNAMID

Freshwater bodies such as rivers and aquifers supply the water that people and businesses rely on. But pressures on these bodies have been mounting worldwide during the last century. Population and economic growth have led to greater water use and increased pollution, with many basins around the world undergoing pervasive water shortages and quality degradation. Researchers expect the impacts of climate change to exacerbate these damages. At the same time, the global economy needs to continue growing to be able to adequately sustain the world’s rising population. However, the linkage between water and economic growth has increased global concerns about the impacts of water-related risks such as scarcity, droughts, floods, and pollution on economies’ ability to grow and create jobs. In fact, the World Economic Forum’s 2016 Global Risks Report ranks water as the highest global risk on economies over the next ten years.

When we talk about water and jobs, it is also important to mention that nearly 750 million people lack access to safe water and 2.5 billion live without adequate sanitation across the developing countries. People in these countries are constantly searching for water, which leaves limited time for productive work and skills building that yield better employment.

As we look towards the future, the link between water and employment becomes even more crucial. Water-related risks, which are expected to intensify due to climate change, will likely have adverse impacts on economy and employment, leading to major consequences beyond the water industry. For instance, researchers have linked the extreme drought in Syria between 2007 and 2010 to the uprising that began there in 2011. Several years of drought caused an extensive crop failure and massive losses of livestock, which resulted in 2 to 3 million people driven into unemployment and poverty. This situation contributed to a mass rural exodus into economically depressed cities, deepening existing instability in that country.

How do we avoid more crises like this? The complex and evolving water challenges of the future can only be addressed by investing in sustainable and integrated water management solutions such as those being identified and tested by the Water Futures and Solutions (WFaS) initiative at IIASA . WFaS is a cross-sector, collaborative, global initiative aimed at developing plausible scenarios of future water supply and demand, and identifying robust and no-regret portfolio of solutions for balancing water systems. The initiative brings together researchers and decision makers from governmental and non-governmental organizations as well as from the private industry and from a wide variety of sectors influencing water management. The potential water solutions include improved water policies and governance structures and the adoption of more innovative and environmentally friendly water technologies. Sustainable water resource management does not only address water-related risks, but it can also create green job opportunities for local and disadvantaged communities, for example in efficiency improvement works, in the production of alternative water sources, and in aquatic ecosystem restoration projects.

World Water Day © UN-Water

World Water Day © UN-Water

 

Note: This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.

How do you operationalize the water-energy nexus?

By Paul Yillia,  Guest Research Scholar, IIASA Water Program

Sunday March 22 2015, was World Water Day. I woke up on that beautiful spring morning in Vienna to the rising sunshine through a slit in the curtains and the lovely humming of birds returning from their winter hideouts some thousands of kilometers away. It was clear to me: winter has ended and spring is here. But there was another thing on my mind that beautiful Sunday morning: the theme of 2014 World Water Day, the water-energy nexus. How can anyone operationalize this concept?

The Water-Energy Nexus has been a hot topic in the water community this year - but how can this concept be turned to action? Poster courtesy UN Water Program

The Water-Energy Nexus has been a hot topic in the water community this year – but how can this concept be turned to action? Poster courtesy UN Water Program

The nexus refers to the notion that global systems are strongly intertwined and heavily interdependent; that systems thinking and planning is required to address persistent global challenges in an integrated way. It is a beautiful concept, no doubt, but what do we do with it?

I joked in my travels and engagements on nexus issues last year that 2014 in my view was the most nexus year. Much has been achieved in 2014: raising awareness of the linkages between water and energy ; demonstrating  that integrated approaches and solutions to water-energy issues can achieve greater economic and social impacts; identifying policy formulation and capacity development issues through which the international development community, in particular the UN system can contribute; and identifying key stakeholders and actively engaging them in the discussion on the post-2015 development agenda.

But so far, much of the work on the nexus has been on advocacy, to galvanize interests and mobilize support at the global level. As a result, the concept received widespread global attention and acceptance. The real question now is: How can we transform those commitments and interests into operational frameworks for programs and initiatives? I woke up thinking of three areas:

  1. Supporting nexus assessment to understand the interactions between various nexus dimensions as countries review and roll out new policies. The objective will be to inspect the performance of current policies in terms of resource use efficiency and productivity in order to facilitate the technical interventions that will be required.
  2. Strengthening consultations and engagement among relevant sectors for various nexus dimensions. This will help decision makers anticipate, plan, and manage interventions collectively and to re-think policies and strategies to deal effectively with a range of complex interactions that are interlinked and interdependent.
  3. Reinforcing the enabling environment to facilitate the transitions that are required. This will require action to support key institutions, policy transitions and facilitating public/private funding mechanisms and investment frameworks that are required for nexus interventions.

How do we do this? First, we need to understand the interactions for a given unit of management. It could a country, a river basin, a municipality, a region or sub-region. Then we need to get various spheres of interest engaged in constructive dialogue, both in planning and in resource allocation and utilization. And probably even more importantly we need to provide the institutional, financial, and human capacity requirements to turn ideas into actions.

The challenges are huge in some regions but progress can be achieved with significant multiple gains if we get the assessments right, if we can get key sector actors to continuously talk to each other, and if are able to strengthen the enabling environment to facilitate actions. We need to act before the interest we have generated in the last couple of years diminishes.

Water and energy are inextricably linked - the "water-energy nexus." Yillia and other researchers in IIASA's Water program aim to bring a holistic view to the subject. Photo Credit: Kali Gandaki dam, Asian Development Bank

Water and energy are inextricably linked – the “water-energy nexus.” Yillia and other researchers in IIASA’s Water program aim to bring a holistic view to the subject. Photo Credit: Kali Gandaki dam, Asian Development Bank

Note: This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.

You will miss the river when it runs dry: Water governance at the U.S. – Mexico border

By Luzma Fabiola Nava, Colosio Fellow and Research Scholar, IIASA Water Program

(Spanish version, Bionero.org)

Credit : Luzma Fabiola Nava

Albuquerque, New Mexico. Credit: Luzma Fabiola Nava

The Rio Grande/Rio Bravo River has been considered the most endangered river in North America and one of the most endangered rivers globally for a long time. Problems include drought and water scarcity, the degradation of water quality, loss of river habitats, and over-exploitation of groundwater. The water allocation regime between the US and Mexico is over a hundred years old and not adequate any longer. It consists mainly of allocating transboundary watercourses and facing environmental issues within a fragmented structure.

The challenge of my research is the design of policy directions to adapt water management mechanisms and foster stakeholder involvement across the river basin. Focusing on stakeholder views, I examine their competing perspectives and interests on water management and environmental protection.

Water managers at the state and federal levels, researchers and practitioners, and environmentalists suggest an alternative approach to reverse environmental degradation and preserve water resources. The Rio Grande/Rio Bravo River is a magical desert river. The river flows through primarily arid environments which, over time, have been appropriated for diverting water and meeting water needs and hydraulically developed. Some people argue that developing the desert and making it habitable and productive has accentuated the fragility of the river environment resulting in ecosystem degradation and diminished quality of life. Also, because of intensive dam-building, the river has been fragmented into sub-basins dividing the water management process and increasing the lack of coordination between agencies across the basin. River fragmentation is highly correlated with poor water quality and loss of biodiversity.

The Rio Grande River near Alberquerque, New Mexico. Credit: Luzma Fabiola Nava

The Rio Grande River near Albuquerque, New Mexico. Credit: Luzma Fabiola Nava

Some stakeholders, such as state water management agencies and researchers, suggest that the biggest environmental threats are the longer periods of drought and the overuse of groundwater, but others, such as some environmental NGO’s and state agencies (mainly in the New Mexico Lower Rio Grande) denounce citizens‘ lack of motivation and say that greater public awareness is needed. Poor participatory citizenship in the water resources decision-making process reflects the disconnection between the river and the citizens’ perceptions. Citizens do not perceive that there is a water-environmental problem since they are accustomed to seeing a dry river, yet when they turn on the tap in their houses, there is always water available.  In my interviews, some people described the Rio Grande as a vagabond, an old man; as an outsider, a homeless, as the poorest river. For these stakeholders, the biggest challenge to reverse the current environmental degradation would be to provide education in water and environmental issues in order to build broad citizen awareness across the basin. I personally think that fostering public awareness, in this fragmented area, could have a genuinely important multiplying effect to solve environmental-water related problems across the river basin.

The Rio Grande River near Mesilla, New Mexico. Credit: Luza Fabiola Nava

The Rio Grande River near Mesilla, New Mexico. Credit: Luzma Fabiola Nava

Reference

Nava, Luzma Fabiola and Samuel Sandoval-Solis. 2014. Multi-Tiered Governance of the Rio Grande/Bravo Basin: The Fragmented Water Resources Management Model of the United States and Mexico, International Journal of Water Governance, IJWG, Vol. 2., No. 1, Baltzer Science Publishers, DOI: 10.7564/13-IJWG23.

Note: This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.

Interview: Aquatic invaders and ecological networks

Danielle Haak, who recently completed her PhD from the Nebraska Cooperative Fish and Wildlife Research Unit and the School of Natural Resources at the University of Nebraska-Lincoln, has won the annual Peccei Award for her outstanding research as part of the 2014 Young Scientists Summer Program (YSSP) in IIASA’s Advanced Systems Analysis research program.

Haak_postYSSP_IcelandCould you tell me a bit about yourself? Where are you from and what do you study?
I grew up in Milwaukee, Wisconsin (USA), and it was there I fell in love with the natural world. As a kid, my family and I spent weekends boating on Lake Michigan, and I’ve always been fascinated by lakes and the hidden world beneath the water’s surface. As an undergraduate, I spent a few summers in northern Wisconsin at a limnology research station, and this is where I realized I could actually make a career out of this fascination! I went on to get a BSc in Wildlife Ecology, a MSc in Biological Sciences, and I recently defended my PhD dissertation that focused on the energetics and habitat requirements of the invasive freshwater Chinese mystery snail. In general, I’m interested in aquatic invasive species and how their introduction affects ecosystem structure, functioning, and resilience.

How did you get interested in this subject?
I was drawn to aquatic invasive species during my undergraduate research. My first independent research project was on invasive crayfish in a northern Wisconsin lake; in addition to out-competing the native crayfish population, the invasive species suffered from a fungal disease outbreak, and we wanted to understand its prevalence throughout the lake. I also worked as a technician on a whole-lake study researching the efficacy of manual removal of an invasive crayfish species from another lake. It was a long-term project that successfully reduced the invasive rusty crayfish population enough that the native crayfish population was able to recover, and the entire lake underwent a drastic physical change as a result. These large-scale dynamics have always been appealing to me, and I knew it was something I wanted to pursue in my career. When I started my PhD at the University of Nebraska-Lincoln, our research group had just started a number of side projects on the Chinese mystery snail, and there was an obvious gap in our scientific understanding of the species; thus, it made sense to take advantage of this opportunity!

What was the question you were trying to answer in your YSSP research project?
My YSSP project built upon my dissertation topic but went in a slightly different direction. My YSSP supervisor, Dr. Brian Fath, and I wanted to utilize the already-established methods of social and ecological network analyses, but in a way that hadn’t been done before. Ultimately, we had two main questions. First, we wanted to investigate how the social dynamics of ecosystems can be integrated into ecological network analysis. And second, we wanted to use network analysis to analyze the ecological effects and movement of the Chinese mystery snail in the southeast region of Nebraska.

What did you find?
Because there were a few parts to this research, we had a number of different results. First, we were able to create directed networks of how anglers and boaters moved among a network of flood-control reservoirs. We also developed ecological networks specific to each of the 19 reservoirs included in our study. Both of these findings were relevant by themselves, but the cool part was how we combined them. We adapted the framework of infectious disease network modeling to simulate what would happen within the first 25 years after a hypothetical introduction. The human movements connecting reservoirs were equivalent to a disease’s transmission rate, and the individual population growth of the snail within each reservoir after an introduction was like a disease’s incubation time leading up to a threshold where that reservoir then became contagious. We started with 5 infected and contagious reservoirs, and after 25 years only 5 of the 19 reservoirs did not have the Chinese mystery snail in it. Finally, we identified three of the already-infected reservoirs where preventing snails from being transported out of them would be most critical as well as two susceptible reservoirs where preventing introduction of the snails would be most beneficial.

Chinese Mystery Snail. Photo: Wisconsin Department of Natural Resources, Doug Jensen

Chinese Mystery Snail. Photo: Wisconsin Department of Natural Resources, Doug Jensen

Why is this research important for policy or society?
Our preliminary results demonstrated that social and ecological network models can be used in tandem, which has the potential to address a number of complex policy and management issues. Additionally, being able to prioritize reservoirs based on how effective prevention efforts would be allows managers to focus their limited resources in places they would get the best return on their investment. I believe there is also a great deal of potential in using this combined model approach to assess the spread of other aquatic invasive species of concern as well as other types of disturbances.  

How are you planning to continue this research when you return to IIASA?
I would like to work with Dr. Fath on refining some of my individual ecological network models, and possibly incorporating some of the additional social data that’s available to us. We also discussed possibly using the approach to look at other questions related to aquatic invasive species, but in different geographical regions and possibly with different software. One of the best parts of this project was coming up with so many questions on where we could go next, and I really enjoyed working with Dr. Fath and gaining a new perspective on the questions that interest me.

How did your time at IIASA affect your PhD research?
My time at IIASA refreshed my love of the scientific process, and I loved the flexibility in adjusting my project as I learned more and developed new questions. Ultimately, I ended up with an additional chapter for my dissertation and came home with a mostly-completed draft.

What was your favorite aspect of the YSSP and IIASA?
I loved so much about YSSP and working at IIASA, but the best part was probably the ability to meet other brilliant scientists and students from around the world. In addition to thought-provoking discussions on science and research, we also had some incredible discussions on life in other countries with drastically different cultures. The other students made the entire summer even better, and I’m so happy I was able to participate in such an incredible experience. IIASA has a truly unique work environment, and everyone made us feel right at home. It really was a dream come true, and I’m so excited about the opportunity to return and pick up where I left off. The only thing missing will be my fellow YSSPers! I wish we could all come back every summer!

What was your favorite moment of the summer?
I think my favorite experience was the end of summer workshop and dinner and dance that followed. I was so impressed during the initial presentations and it was great to hear about all the progress that was made in the short three months. Celebrating this progress with a night of dancing and dining was just the perfect ending to a great summer. It was a bittersweet farewell, but I think it cemented our friendships and was a great capstone to an already dreamlike experience!

Photo credit: Danielle Haak

Danielle Haak (right) and fellow YSSPer Adriana Reyes, at the end-of-summer awards ceremony.

Note: This article gives the views of the interviewee, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.

Barriers to adaptation: Really?

By  Robbert Biesbroek, Wageningen University and Research Centre, the Netherlands

Over the past years, a series of reports by the World Economic Forum have identified “failure to adapt to climate change” as being of highest concern to society. But in practice, what does adaptation to climate change mean?  What makes adaptation particularly challenging for those policymakers, consultants, businesses and other practitioners working on adaptation in practice? An often heard answer is, “Because there are barriers to adaptation.”

The storm surge barrier Oosterschelde nearby Neeltje Jans in The Netherlands. With its low elevation and long coastline, the Netherlands is particularly sensitive to sea level rise, and has taken an early start to climate adaptation planning (Photo: Shutterstock)

The storm surge barrier Oosterschelde nearby Neeltje Jans in The Netherlands. With its low elevation and long coastline, the Netherlands is particularly sensitive to sea level rise, and has taken an early start to climate adaptation planning (Photo: Shutterstock)

In a recent study, we identified numerous examples of barriers to adaptation encountered by practitioners across the globe. These barriers to adaptation emerge from all angles and direction; they can be institutional (e.g. “rigid rules and norms”) resources (e.g. “lack of money”, “uncertain knowledge”) social (e.g. “no shared problem understanding”), cognitive (e.g. “ignorance”, “apathy”).

As scholars, we have proven to be very good in making lists of barriers to adaptation, but rather poor in understanding where these barriers come from, what the concept of “barriers” means to practitioners, why barriers are mentioned at all, or how barriers can be dealt with in an meaningful way. In a follow-up study, colleagues and I argued that listing barriers in isolation from their decision-making context is an interesting first step, but has hardly provided insights in the openings needed to adequately deal with them. In fact, they often lead to a linear argumentative logic – “Not enough money? Then we need more money or we need to spend the money we do have more wisely!” Such superficial advice is not particularly useful to practice.

By delving deeper in the questions of why adaptation is challenging, we found that what practitioners mention as barriers are mere simplifications of what really happened. Barriers become metaphors that capture people’s lived experience and evaluation of the process into easy to communicate messages – e.g. “no money.” We can argue about whether this is truly a barrier, because their interpretation stems from a complex and dynamic chain of events that only makes sense to those that were actively involved. By putting labels on these events, they automatically become static, therefore lacking the necessary insights in the dynamics that caused the process to become challenging and provide the necessary openings to intervene. We concluded that using barriers as units of analysis to explain why adaptation is challenging is therefore flawed: the analytical challenge is to go beyond barriers in search of the explanatory causal processes, or so-called causal mechanisms.

An example: In our study, we identified 24 different barriers encountered by practitioners during the design and implementation of an innovative adaptation measure for temporal water storage in the city center of Rotterdam, the Netherlands. By going beyond  this list, we uncovered three underlying mechanisms that explain why the first attempt to implement the so-called “water plaza” failed. One mechanisms, we called the risk-innovation mechanism—which is basically a miscommunication about risk that leads to public outcry.

An illustration of the proposed water plaza that failed in the Netherlands.  (image: de urbanisten)

An illustration of the proposed water plaza in the Netherlands. (Image: De Urbanisten)

In this case, the government took a technocratic stance in communicating the risks and benefits of the project.  Meanwhile the citizens, as mutual bearers of the risks, wanted to negotiate about what levels of risk were acceptable. By taking such stance the government avoided a moral debate about the risk of the innovation (the innovation was “adaptation”), but the result was angry citizens who to rebelled against the project and the municipal government. This analysis provided openings to change communication strategies – an intervention the project team used successfully in next stages of the process.

Insights from this study have broader implications. It explains, for example, why existing guidelines to support practitioners to overcome barriers to adaptation have not worked well: As I explored more deeply in my thesis, these guidelines are simply not tailored to the real reasons why adaptation is challenging. We can continue to make endless lists of barriers, but to advance theoretically and conceptually, and to provide meaningful strategies to intervene in practice, we need to rethink how we use the concept of “barriers to adaptation” and start searching for underlying causal mechanisms.

Robbert Biesbroek completed his PhD in January 2014, supervised by IIASA Director General and CEO Prof. Dr. Pavel Kabat. 

Note: This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.

References:

(1) Biesbroek, G. R., Klostermann, J. E. M., Termeer, C. J. A. M., & Kabat, P. (2013). On the nature of barriers to climate change adaptation. Regional Environmental Change, 13(5), 1119-1129.

(2) Biesbroek, G. R., Termeer, C. J. A. M., Klostermann, J. E. M., & Kabat, P. (2014). Rethinking barriers to adaptation: mechanism based explanation of impasses in the governance of an innovative adaptation measure. Global Environmental Change 26, (1) 108-118

(3) Biesbroek, G. R. (2014). Challenging barriers in the governance of climate change adaptation. Ph.D. thesis, Wageningen: Wageningen University.