By Benigna Boza-Kiss, Shonali Pachauri, and Caroline Zimm from the IIASA Transformative Institutional and Social Solutions Research Group
Benigna Boza-Kiss, Shonali Pachauri, and Caroline Zimm explain how COVID-19 has impacted the poor in cities and what can be done to increase the future resilience of vulnerable populations.
The COVID-19 pandemic has brought a halt to life as we knew it. We have been restrained in our activities and freedoms, forced to stay indoors at home, to cancel travel plans, and to transfer meetings to an online space, where most of us have also celebrated birthdays and other important life events that should have been in person with our loved ones. These changes have impacted many aspects of our comfort, our social wellbeing, as well as our financial situations, but it has also brought existing inequalities and poverty into the spotlight.
The risks of the pandemic and restrictions following containment measures have been felt most acutely by the poor, the vulnerable, those in the informal sector, and those without savings and safety nets. The suffering of women in the health sector, school children in households without electricity and internet, workers in the informal sector that don’t have the option to telework, crowds living in slums – to name just a few examples of vulnerable groups – have become glaringly visible to all. These people have had to adapt to new rules and conditions when they were living on the edge even before the pandemic.
In a new perspective piece published in the journal Frontiers in Sustainable Cities, we explored how aspects related to access to shelter/housing, modern energy, and digital services in cities have influenced the poor and what can be done to increase the future resilience of vulnerable populations.
We described three ways in which the COVID-19 pandemic and related containment measures have exacerbated urban inequalities, and identified how subsequent recovery measures and policy responses could redress these.
First, lockdowns amplified urban energy poverty. Staying at home has meant increased energy use at home. For the poor, who already struggle with utility costs, and typically live in low energy quality buildings, these services have become even more unaffordable. These populations also shoulder a higher burden of poor health, for example, higher incidence of respiratory problems, with poor or inadequate ventilation and insulation increasing their risk of infection even more.
Second, preexisting digital divides have surfaced, even within well-connected cities. Multiple barriers limit digital inclusion: access to digital technologies due to high costs (for devices, internet access, and electricity connections), and unreliable services (again both for electricity and internet), as well as low digital literacy and support. This lack of adequate digital service access is contributing to these populations falling further behind during lockdowns as they miss out on education and income.
Third, slum dwellers in the world’s cities have been particularly hard hit, because of precarious and overcrowded housing conditions, lack of basic infrastructure and amenities, and a high concentration of the socioeconomically disadvantaged, resulting in even more negative consequences of lockdown measures. With many slum inhabitants working in the informal sector, many have been left either without jobs and income, or have been compelled to work in precarious and unsafe conditions to survive. The loss of income has also had knock-on effects, making payments of regular expenditures for rent, water, electricity, and other utility services difficult. Women within these settlements have been disproportionately impacted by the pandemic, as they are over represented in the informal economy, and more likely to be engaged in invisible work, such as home-based or domestic and care work.
Recovery measures need to ensure immediate relief, but also point towards long-term solutions that contribute to the redistribution of wealth and new urban development, while also increasing resilience to the current and future pandemics or other disasters. There are tested measures that should be reemphasized.
Urban green recovery plans that include large-scale home renovation programs could ensure warm, healthy homes, and affordable energy bills for all. In the shorter-term, alleviation of payment defaults on the rents and utility bills of the energy poor should continue. In parallel, urban digital preparedness, more equal access to the virtual delivery of essential services, and provision of opportunities for virtual working and education for all in the future, need attention.
COVID-19 can be a wake up call to increase efforts to close the digital divide and push for structural change. The crisis has increased the urgency to redesign and improve informal settlements and provide adequate and efficient services that address the diverse needs of poor urban residents. This requires partnerships between urban municipalities, planners, and stakeholders, as well as strengthening local communities for inclusive planning strategies. More immediately, it is necessary to provide direct support to slum and informal settlement populations in terms of income support, adequate nutrition, energy, water, and other basic infrastructure and services.
All in all, the COVID-19 pandemic has been a “test of societies, of governments, of communities, and of individuals”. Digital technologies, home renovation, and slum rehabilitation are the means, rather than the end to improve conditions for all, but if specifically targeted to the poor and most deprived, such measures can reduce inequalities and increase resilience.
Reference:
Boza-Kiss, B., Pachauri, S., & Zimm, C. (2021).Deprivations and Inequities in Cities Viewed Through a Pandemic Lens.Frontiers in Sustainable Cities 3 e645914. [pure.iiasa.ac.at/17121]
Note: This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.
by Viktor Roezer | Swenja Surminski | Finn Laurien | Colin McQuistan | Reinhard Mechler | Anna Svensson
Disaster Risk Reduction investments bring a wide variety of benefits, including economic, ecological, and social, but in practice these multiple resilience dividends are often not included in investment appraisals or are not recognized by those making funding decisions. How do we change this?
With investments in disaster risk reduction (DRR), where community resilience is enhanced these negative impacts can be reduced and savings can be made. It’s more cost effective to invest in pre-event resilience than post-event response and recovery.
So why is disaster risk reduction so difficult to finance?
The problem with estimating the direct benefit of disaster risk reduction interventions is that you only see the benefits when an event which would otherwise have turned into a disaster occurs and is successfully mitigated.
This makes cost-benefit analysis and other decision-making methods difficult to carry out, and makes the costs of doing something more aligned to the probability of the event, rather than the lives and economic costs saved, thus changes to policy and practice are slow to materialize.
What are the multiple dividends of resilience?
The multiple dividends of resilience refer to positive socioeconomic outcomes generated by, and co-benefits of, an intervention beyond, and in addition to, risk reduction.
It’s an approach aimed at making DRR investments more attractive as the multiple dividends of an investment may help identify win-win-win situations (as well as trade-offs), even if no hazard event occurs. Co-benefits can be intended, or unintended.
1. The avoided losses and damages in case of a disaster
For example, how bio-dykes in Nepal prevent river bank erosion, which reduces the risk of flooding, and associated sand deposits that ruin the fertility of agricultural land.
2. The economic potential of a community that is unlocked through the intervention
This includes ecosystem-based adaptation solutions in Vietnam where mangrove plantations create new habitats for fish, leading to improved livelihood opportunities for those making their living from fishing.
3. Other development co-benefits
Transition to solar stoves in rural Afghanistan does not only protect natural capitals from degradation, but also empowers women and girls, reduces in-house smog pollution, and fosters technological innovations.
Rongali next to his community’s bio-dyke. Photo by Sanjib Chaudhary, Practical Action.
What are the challenges?
The triple resilience dividend approach is often linked to new and innovative solutions like ecosystem based adaptation, where the benefits can be wider, but when and how they will materialize is more uncertain than with traditional, hard infrastructure solutions.
Although many developing countries have policies that align DRR, climate change adaptation, and sustainable development, sadly, in practice, local decision makers assume that multiple resilience dividends will only accumulate over the long term. This often leads them to select traditional, hard infrastructure solutions that offer quick and more visible protection.
We need more success stories. Pilot interventions can be shared and shown to community members and decision makers to overcome their skepticism but this require better and more comprehensive evidence than we have today.
We also lack decision-making frameworks that can include and monitor multiple resilience dividends. Frameworks that support planners as they navigate the decision-making process, and help generate the evidence needed.
Community members in the Peruvian Andes working at a local tree nursery. Photo by Giorgio Madueño , Practical Action
As we suggest, instead of maximizing resilience dividends based on a specific, one dimensional, metric (e.g., monetary benefits) decision-making approaches need to identify those dividends that are most needed and demanded by the community and the solutions, novel or local in nature, best suited to generate these.
A structured approach in combination with participatory decision making allows for a tailored approach where community buy-in is achieved by prioritizing the resilience dividend(s) that matter most to them, while at the same time contributing to the evidence base for multiple resilience dividends.
This is urgently needed to highlight the fundamental challenges with the existing planning and decision-making system and therefore generate demand to deliver more effective solutions at scale.
Cleaning waste from river in Penjaringan Urban Village, Jakarta, Indonesia. Photo by Piva Bell, Mercy Corps.
Read the working paper this blog is based on here.
Note: This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.
By Husam Ibrahim, International Science Council (ISC)
The IIASA-ISC Rethinking Energy Solutions Report identifies the negative and positive lessons learnt from the ongoing COVID-19 pandemic in relation to energy consumption and demand, and recommends several immediate actions.
Credit: Adam Islaam – IIASA
As a result of the pandemic’s confinement and containment policies, energy demand and resulting energy-related carbon emissions declined by an estimated 2.4 billion tonnes in 2020 – a record drop according to researchers at Future Earth’s Global Carbon Project. However, the reduction is likely to be short-lived if structural changes do not occur.
The COVID-19 pandemic has caused foreseeable positive and negative disruptions to the global energy sector. This has revealed opportunities that can be learnt from to meet Sustainable Development Goals (SDGs) and the Paris Agreement pledges, with the positive disruptions showing us the possibility of a more sustainable and resilient future.
The IIASA-ISC Rethinking Energy Solutions Report recommends actions based on the opportunities and vulnerabilities in energy systems that the COVID-19 pandemic has brought to light.
“The pandemic is a threat, but also an opportunity, because it showed that the system we have spent a lot of money and resources on is not working the way it should, so the crisis should be used to draw up new budgets, take new actions, and rebuild society.”
– Behnam Zakeri, Research Scholar, IIASA
The report highlights that solutions previously thought to be out of reach are far more possible than expected. One such positive outcome is the digitalization of physical activities, such as attending work, schools, conferences, and other gatherings online. This has resulted in short-term lifestyle changes — introducing and normalizing digital solutions for a mass audience — which the report recommends capitalizing on in a post-COVID society.
Some companies, like Spotify, a music streaming service, have announced that they will let their employees work remotely from anywhere after the pandemic. The report suggests that more companies and governments should do the same, as digitalization offers opportunities to use resources more efficiently, and so has the potential to make consumption more sustainable and to reduce carbon footprints.
Efforts to digitalize and reduce the population’s carbon footprint work hand-in-hand with the need to reinvent urban spaces to reach the SDGs and combat climate change.
Cities consume 60-80% of global energy and produce more than 70% of carbon emissions. What’s more, 70% of the world’s population is projected to live in urban areas by 2050.
The report proposes that cities should be redesigned into more sustainable ‘urban villages’ so that they are optimized for energy efficiency. One way to do this would be to redesign cities into compact neighborhoods where all amenities (shops, offices, schools, etc.) are within walking distance. Paris, France, for example, promotes self-sufficient neighborhoods, with all the essential amenities placed within a 15-minute radius. Several other cities like Melbourne, Australia, with its “20-minute neighborhoods” and the Nordhavn “5-minute neighborhood” in Copenhagen, Denmark, are promoting this new standard for the use of space and sustainable mobility.
Another key approach to reinventing urban spaces is prioritizing nature-based solutions by using parks, green roofs, green walls, and blue infrastructure to combat climate change and connect the population back to nature. This also means centering public spaces around people, by converting street spaces from car use to sidewalks and bike lanes, and enhancing the quality and safety of walking and biking infrastructures.
The report also recommends that cities be rebuilt to incorporate renewable energy. The costs for renewable technologies are declining quite fast, but Zakeri explained that the problem with moving to renewable energy is not the cost but a lack of understanding. Consumers, experts, and governments lack the knowledge to distribute, access and install these technologies. However, in recent times, scientists and other experts have brought more awareness to them and are helping the trend move forward.
The report states the importance of developing net zero-energy communities that have a holistic approach to energy-efficient building renovation and construction of new buildings. The net zero-energy design must consider the energy interactions between individual buildings and the broader energy system on a local level.
These recommended actions aren’t just about energy efficiency but about creating a more fulfilling life for all.
“Rebuilding cities to be more sustainable and resilient [to future crises] not only has the potential to reduce energy consumption but also create a more joyful lifestyle that improves the wellbeing and experience of people living in a city.”
– Behnam Zakeri, Research Scholar, IIASA
For more information on rebuilding urban spaces, and addressing energy lessons from the COVID-19 pandemic read the IIASA-ISC Rethinking Energy Solutions Report.
You can also watch the discussion on Rethinking Energy Solutions as part of the launch event for the Bouncing Forward Sustainably: Pathways to a post-COVID World, which explores the key themes of Sustainable Energy, Governance for Sustainability, Strengthening Science Systems and Resilient Food Systems.
This blog post was first published on the website of the International Science Council. Read the original article here.
Note: This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.
By Husam Ibrahim, International Science Council (ISC)
The IIASA-ISC Consultative Science platform has engaged transdisciplinary global thought leaders to produce four reports that focus on a more sustainable pathway to a post COVID-19 world. This blog post looks at the report on Strengthening Science Systems.
Credit: Adam Islaam – IIASA
Science has spoken reason to power and politics, expanded open science practices, and found a vaccine in record time during this pandemic, yet perceptions of how science has responded overall to the current crisis still vary. There is a broad consensus that there is considerable room for improvement in science systems in the general context of rapidly evolving global exogenous shocks.
“The COVID-19 pandemic is a cautionary tale about the importance and necessity of science: we will face crisis, we know that, and we will best address it through science, but science itself stumbles along and science needs to be more humble, be better educated and not only communicate their knowledge but also communicate the limitation of their knowledge so that science systems can move towards a better frontier.”
– David Kaplan, Senior Research Specialist, ISC
In 2020, IIASA and the International Science Council (ISC) combined their strengths and expertise to define and design sustainability pathways that will help all levels of global governance be better prepared and more resilient in protecting from future systemic shocks.
In these testing times, policymakers and the general public have looked to science for insight, reliable solutions, and actionable advice. The Strengthening Science Systems report addresses how science systems can be better prepared when an inevitable crisis hits again.
The report puts forward a large number of recommendations, grouped under five interrelated major transformative changes:
Strengthen transdisciplinary research and networking on critical risks and systems resilience
As seen with the COVID-19 pandemic, risks can spread globally regardless of their origin. It is in the interests of all countries to work together and provide support to one another. Most notably, developed countries need to help further strengthen scientific capacities with financial support, technology support and technology transfer for developing countries.
On the other hand, while risks may be global, the manner in which they play out and particularly the way in which different societies respond, show considerable variation. Local scientific capacity has the ability to address the local context and develop effective strategies to address risk. This will allow local scientists to put knowledge on disaster risks at the core of disaster risk reduction policies.
Enhance communication of scientific knowledge, public understanding, and trust in science
Trust in science and in the recommendations emanating from scientists are key to the effectiveness of science-based policies. This is especially important as science denial and misinformation have increased during the pandemic. Communication, transparency, and broad public understanding of how science works are three foundations which will enhance trust in science.
Scientists themselves should therefore be incentivized to play a more active role in combating misinformation in their fields, as they are best equipped with the facts. Alongside that, easily accessible sources of scientific results that are simpler for a mass audience to understand should be created in a wider array of languages.
Enhance knowledge diffusion within the science system
Peer-review systems have been shown to be somewhat inadequate in the face of the COVID-19 pandemic. Peer-review systems need to be more agile, international, rigorous, and inclusive in terms of access and avoiding bias if science is to meet the challenges of future crises.
International organizations of science, including the ISC and UNESCO, can take a lead in devising a more effective system of peer review through dialogue with international disciplinary bodies, national academies, publishers, and national research councils.
Increase the capacity of the science system to respond rapidly to crises with high-quality research
Some countries lack adequate disaster research institutions. These institutes cannot be created in a short period of time and need prior infrastructural efforts, so there needs to be ample support and funding of smaller research institutions in advance of possible disasters. Collaborative efforts between big and small research institutes on a global and local scale are highly recommended. Governments also need researchers who can be on standby and they need to allocate funds that are easy to access during a crisis.
Improve the quality and efficacy of science-policy interfaces at national, regional, and global levels
Science advice has moved to center stage when dealing with policies to respond to the COVID-19 pandemic, which has challenged national science–policy systems. Lessons have been learned about how science can become a more effective input into policy. This involves further international scientific cooperation among institutions engaged in science-policy advice, to enhance the quality of science inputs to policy.
International collaboration allows for sharing of evidence and the emergence of a scientific consensus. This consensus can then be communicated to policymakers who, in turn, need to interact more with the wider academic community to systematically review their country’s policies.
These are some of the conclusions from the five lessons on interrelated transformative changes for the science system cited in the report. They show three axes of improvement that are required to ensure that science can react more efficiently to such exogenous shocks: increased agility, enhanced reliability, and a more effective science-policy-society interface. The main overarching objective is to simultaneously improve all three axes, thereby moving science systems to a new frontier.
You can also watch the discussion on Strengthening Science Systems as part of the launch event for the Bouncing Forward Sustainably: Pathways to a post-COVID World, which explores the key themes of Sustainable Energy, Governance for Sustainability, Strengthening Science Systems and Resilient Food Systems.
This blog post was first published on the website of the International Science Council. Read the original article here.
Note: This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.
By Prakash Khadka, IIASA Guest Research Assistant and Wei Liu, Guest Research Scholar in the IIASA Equity and Justice Research Group
Prakash Khadka and Wei Liu explain how unbridled, unplanned infrastructure expansion in Nepal is increasing the risk of landslides.
Worldwide, mountains cover a quarter of total land area and are home to 12% of the world’s population, most of whom live in developing countries. Overpopulation and the unsustainable use of these fragile landscapes often result in a vicious cycle of natural disaster and poverty. Protecting, restoring, and sustainably using mountain landscapes is an important component of Sustainable Development Goal 15 ̶ Life on Land ̶ and the key is to strike a balance between development and disaster risk management.
Nepal is among the world’s most mountainous countries and faces the daunting challenge of landslides and flood risk. Landslide events and fatalities have been increasing dramatically in the country due to a complex combination of earthquakes, climate change, and land use, especially the construction of informal roads that destabilize slopes during the monsoon.
According to Nepal government data, 476 incidents of landslides and 293 fatalities were recorded during the 2020 monsoon season – the highest number in the last ten years, mostly triggered by high-intensity rainfall – a trend which is increasing due to climate variations. According to one study, by mid-July 2020, the number of fatal landslides for the year had already exceeded the average annual total for 2004–2019.
Figure 1: A map of landslide events in Nepal from June to September 2020. Source: bipadportal.gov.np
Landslides are not a new phenomenon in the country where hills and mountains cover nearly 83% of the total land area. While being destructive, landslides are complex natural processes of land development. The Gangetic plain, situated in the foothills of the Himalayas, was formed by the great Himalayan river system to which soil is continually added by landslides and deposited at the base by rivers. Mountain land changes via natural geo-tectonic and ecological processes has been happening for millions of years, but fast population growth and climate change in recent decades substantially altered the fate of these mountain landscapes. Road expansion, often in the name of development, plays a key role.
Many mountain areas in Nepal are physically and economically marginalized and efforts to improve access are common. Poverty, food insecurity, and social inequity are severe, and many rural laborers opt to migrate for better economic opportunities. This motivates road network expansion. Since the turn of the century, Nepalese road networks has almost quadrupled to the current level of ~50 km per 100 km2, among which rural roads (fair-weather roads) increased more than blacktop and gravel roads.
Figure 2: Mountains carved just above Jay Prithvi Highway in Bajhang district of Sudurpaschim province to build a road
Nepalese mountain roads are treacherous and subject to accidents and landslides. Rural roads, which are often called “dozer roads”, are constructed by bulldozer owners in collaboration with politicians at the request of communities (also as part of the election manifesto in which politicians promised road access in exchange for votes and support to win), often without proper technical guidance, surveying, drainage, or structural protection measures. In addition, mountains are sometimes damaged by heavy earthmovers (so-called “bulldozer terrorism”) that cut out roads that lead from nowhere to nowhere, or where no roads are needed, at the expense of economic and environmental degradation. Such rapid and ineffective road expansion happens throughout the country, particularly in the middle hills where roads are known to be the major manmade driver of landslides.
To tackle these complexities, we need to rethink how we approach development in light of climate change. This has to be done with sufficient investigation into our past actions. The Nepalese Community forestry management program, which emerged as one of the big success stories in the world, encompasses well defined policies, institutions, and practices. The program is hailed as a sustainable development success with almost one-third of the country’s forests (1.6 million hectares) currently managed by community forest user groups representing over a third of the country’s households. Another successful example is the innovation of ropeways and its introduction in the Bhattedanda region South of Kathmandu. The ropeways were instrumental in transforming farmers’ lives and livelihoods by connecting them with markets. Locals quickly mastered the operation and management of the ropeway technology, which was a lifesaver following the 2002 rainfall that washed away the road that had made the ropeway redundant until then.
These two examples show that it is possible to generate ecological livelihoods for several households in Nepal without adversely affecting land use and land cover, which in turn contributes to increased landslide risk in the country, as mentioned above.
A rugged landscape is the greatest hindrance to the remote communities in a mountainous country like Nepal. It cannot be denied that the country needs roads that serve as the main arteries for development, while local innovations like ropeways can well complement the roads with great benefits, by linking remote mountain villages to the markets to foster economic activities and reduce poverty. Such a hybrid transportation model is more sustainable economically as well as environmentally.
It is a pity that despite strong evidence of the cost-effectiveness of alternative local solutions, Nepal’s development is still mainly driven by “dozer constructed roads”. Mountain lives and livelihoods will remain at risk of landslides until development tools become more diverse and compatible.
References:
Gyawali, D. (Ed.), Thompson, M. (Ed.), Verweij, M. (Ed.). (2017). Aid, Technology and Development. London: Routledge, https://doi.org/10.4324/9781315621630
Gyawali, Dipak; Dixit, Ajaya; Upadhya, Madhukar (2004). Ropeways in Nepal.
Note: This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.
You must be logged in to post a comment.