Climate change, bioenergy, and ozone in the EU

By Carlijn Hendriks, Netherlands Organization for Applied Scientific Research (TNO) & IIASA Peccei award winner

Last summer, I participated in IIASA’s Young Scientist Summer Program, working with the Mitigation of Air Pollution and Greenhouse Gases and Ecosystems Services and Management programs. My research focused on what impacts the EU climate and air quality policy could have on ground level ozone around the middle of this century. While clean air policies should help reduce the pollution that can lead to ozone formation, we found that that climate change and energy policies will still increase ozone concentrations and damage by mid-century, unless stricter air pollution measures are implemented.

Ozone forms through reactions of various pollutants - a process that speeds up at higher temperatures. © Damián Bakarcic via Flickr

Ozone forms through reactions of various pollutants and chemicals in the atmosphere – a process that speeds up at higher temperatures. © Damián Bakarcic via Flickr

Ozone at ground level is an air pollutant, causing health and ecosystem problems. It is also an important component of summer smog. Ozone is not emitted into the atmosphere directly, but is produced when volatile organic carbons are oxidized in the presence of  nitrogen oxides and light. Nitrogen oxides are released into the atmosphere mainly as a result of combustion processes (like car engines and industry), while non-methane volatile organic carbons (NMVOCs)  come in large part from vegetation, especially broad-leaf trees and some fast-growing crops.

Part of the EU energy policy is to stimulate the use of sustainable biomass as an energy source. This could lead to expansion of commercial bioenergy crop production in plantations and an increasing use of  forests. While this may help to reduce greenhouse gas emissions, it will also increase NMVOC emissions. At the same time, EU air quality policies aim to reduce emissions of air pollutants such as nitrogen oxides and man-made NMVOC. Because some steps in the ground level ozone formation process are driven by absorption of light and/or proceed faster with higher temperatures, climate change could lead to higher ground level ozone concentrations in the future.

The separate effects of these three trends on ground level ozone have been studied before, but the question remains: what will be the combined impact of a) an increase of bioenergy plantations, b) EU’s air quality policy and c) climate change on health and ecosystem damage from ground level ozone? And which of the trends is the most important? To answer these questions, I used three models to study two energy and air quality scenarios for Europe under current and possible future climate conditions.

Two energy scenarios calculated by the Price-Induced Market Equilibrium System (PRIMES) model form the basis of this work. We used a reference scenario and one in which Europe reaches 80% CO2 emission reduction in 2050. These energy scenarios were used as a basis to calculate air pollutant emissions with IIASA’s  Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS) model. Then we put the same scenarios into IIASA’s Global Biosphere Model GLOBIOM to obtain the change in land cover because of increasing bioenergy demand. I combined these datasets in chemistry transport model LOTOS-EUROS (the model of choice at my home institute, TNO) to calculate the impact on ground level ozone concentrations across Europe. To simulate ‘future climate’ we used the year 2003, in which Europe had a very warm summer, with temperatures 2-5 °C higher than normal.

Difference in average ozone concentration (in µg/m3) between the current situation and the 80% CO2 reduction scenario in 2050 under future climate change conditions for the period April-September. Negative numbers mean a decrease in ozone levels.

Difference in average ozone concentration (in µg/m3) between the current situation and the 80% CO2 reduction scenario in 2050 under future climate change conditions for the period April-September. Negative numbers mean a decrease in ozone levels.

We found that especially for the CO2-reduction scenario, the increase in bioenergy production could cause a slight increase in ozone damage. However, the impact of reduced emissions because of more stringent air quality policies far outweighs this effect, leading to a net reduction of ozone damage. The third effect, more efficient ozone formation in a warming climate, is so strong that in 2050 ozone damage to human health could be worse than today, especially for northwestern Europe. Stringent air quality policies close to a maximum feasible reduction scenario would be needed to make sure that health and ecosystem damage towards the middle of the century is smaller than it is today.

Note: This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.

A new vision of Trans-Eurasian transportation

By Katherine Leitzell, IIASA Science Writer and Press Officer

The Trans-Siberian Railway is the longest railway in the world, connecting Moscow with Vladivostok and the Sea of Japan. Built at the turn of the 19th century, the railroad network connected remote Eastern Russia with the rest of the country, and created the first overland link between Europe and Asia.

In a meeting last week at IIASA, Russian researcher Yury Gromyko presented an equally ambitious transportation “megaproject” for the next century: the Trans-Eurasian Belt of Razvitie (Development in Russian), or the TEBR. The project, led by a group of leading Russian intellectual centers, would provide a new transportation network between markets in Europe and Asia, including high-speed rail, roads, as well as infrastructure such as pipelines and telecommunications networks.

Maglev trains, like this one in Shanghai, would be one component of the envisioned TeBR project. © 06photo | Dreamstime.com

Maglev trains, like this one in Shanghai, would be one component of the envisioned TEBR project. © 06photo | Dreamstime.com

Yet in Gromyko’s view the TEBR is also a development project that would bring new opportunities for trade and employment to the entire corridor of the construction. Gromyko described the project as a “New Future Zone,” which could revolutionize trade and economic development across Eurasia.

If the TEBR succeeds, Gromyko envisions new networks of smart cities in eastern Russia based on innovative technologies and new industries that would stem the tide of migration towards Moscow, instead pulling a new generation eastwards. “We need millions of young people to move to the Russian Far East. To attract them, there would need to be exciting jobs and affordable housing,” said Gromyko.

Gromyko presented the project at a workshop entitled, Development of Transport and Infrastructure in Eurasia. The meeting brought together transportation experts from across Eurasia to discuss visions for future development of the continent, and the key role of a multi-infrastructure approach in that development. Multi-infrastructure presupposes integration of different infrastructures from transportation to energy and telecommunications.

“Transportation and infrastructure are simply integral to economic development,” explains Michael Emerson, a senior researcher in the project who splits his time between the Centre for European Policy Studies (CEPS) and IIASA. “You cannot have one without the other.”

Credit: Russian Academy of Sciences

Credit: Russian Academy of Sciences

The event was the 5th in a series of scoping workshops arranged as part of the IIASA-coordinated project, Challenges and Opportunities of Economic Integration within a wider European and Eurasian Space, following previous workshops focused on research methodology, trade policy, non-tariff barriers, and energy. In addition to transportation and infrastructure projects, participants discussed investment and finance options for such major international efforts, as well as the challenges and opportunities of drawing private investment for long-term investments in infrastructure.

Several more scoping workshops are planned on different dimensions related to economic regional integration, explained project leader Elena Rovenskaya, the director of IIASA’s Advanced Systems Analysis Program. They create the foundation for the research phase involving researchers, business leaders, and policymakers from across Eurasia.

More information
Project: Challenges and Opportunities of Economic Integration within a Wider European and Eurasian Space 

Note: This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.

Accounting for land use in EU climate policy

By Hannes Böttcher, Senior Researcher, Öko-Institut, previously in IIASA’s Ecosystem Services and Management Program

In or out?  Debit or credit? The role of the land use sector in the EU climate policy still needs to be defined

The EU has a target to reduce greenhouse gas emissions by at least 40% by 2030. This is an economy-wide target and therefore includes the land use sector, which includes land use, land use change and forestry. The EU is currently in the process of deciding how to integrate land use into this target. This is not an easy task, as we show in a new study.

© Souvenirpixels | Dreamstime.com

Land use includes activities, such as logging, that can release greenhouse gases into the atmosphere. But the sector also includes other processes that can remove greenhouse gases from the  atmosphere. Accounting for these processes is a complicated task. © Souvenirpixels | Dreamstime.com

The land use sector has several particularities that make it different from other sectors already included in the target, such as energy, industrial processes, waste, and agriculture. The most specific particularity is that the sector includes activities that cause emissions but also can lead to carbon being removed from that atmosphere, and taken up and stored in vegetation and soil. However, this removal is not permanent. Harvesting trees, and burning wood releases the carbon much more quickly than it was stored. Another particularity is that not all emissions and removals are directly caused by humans. This is especially true for removals from forest management.

In the past, the EU reported that uptake and storing of carbon through land use activities was higher than emissions from this sector. The European land use sector thus acted as a relatively stable net sink of emissions at around -300 to -350 Megatons (Mt) CO2 per year. But this might change in the near future: projections show the net sink declining to only 279 Mt CO2 in 2030.

Adding up carbon credits and debits
The emissions and removals that are actually occurring in the atmosphere are not exactly those that are currently accounted for under the Kyoto Protocol. Rather complicated rules exist that define what can be counted as credits and debits. Depending on how these rules develop, the EU sink may be accounted for to a large degree as a credit, or it could turn into a debit because the sink is getting smaller compared to the past. It is not likely that the entire sink will be turned into credits. Especially for the management of existing forests, which contributes a lot to the net sink, negotiators of the Kyoto Protocol have developed special accounting rules for the time before 2020. Under these rules, carbon credits only count if measured against a baseline.

The rules for the time after 2020 have not yet been agreed, however, as the Kyoto Protocol ends in 2020. In order to assess the impact of including the land use sector in the EU target in our new study, we had to make different assumptions, for example about how much wood we will harvest, the development of emissions and removals, and what the baseline for forest management should be. We then applied the existing Kyoto rules and alternative rules and assessed their impact on the level of ambition required to meet the EU’s target. It quickly became obvious: the assumptions we make and the rules we apply have very large implications for the 2030 Climate and Energy Framework.

One option of including land use discussed by the Commission is to take agriculture emissions out of the currently existing framework of the so-called ESD (an already existing mechanism to distribute mitigation efforts among EU Member States for specific sectors such as transport, buildings, waste and agriculture) and merge it with land use activities in a separate pillar. In our study we estimated the net credits that the land use sector could potentially generate, and found these credits could be as high as the entire emission reduction effort needed in agriculture. This would mean that in agriculture no reductions would be needed if the credits from land use were exchangeable between the sectors.

The impact on thannes-fighe target of 40% emissions reductions can be more than 4 percentage points if land use is included and the rules are not changed. This means that the original 40% target without land use would be reduced to an only 35% target. Other sectors would have to reduce their emissions less because land use seems to do part of the job. The target as a whole would thus become much less ambitious than it currently is. But this does not need to be the case. If accounting rules are changed in a way to account for the fact that the sink is getting smaller and smaller, land use would create debits. Including debits in the target would make it a 41% target instead and increase the overall level of ambition. This would be bad for the atmosphere because effectively emissions would not be reduced as much as needed.

It thus all depends on assumptions and rules. Before the rules are announced, the contribution of the land use sector cannot be quantified. Given this, we argue that the best option would be to keep land use separate from other sectors, give it separate target and design accounting rules that set incentives to increase the sink.

Reference
Böttcher H, Graichen J. 2015. Impacts on the EU 2030 climate target of inlcuding LULUCF in the climate and energy policy framework. Report prepared for Fern and IFOAM. Oeko-Institut.

Note: This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.

What is the optimal fertility rate?

By Erich Striessnig, IIASA World Population Program

Credit: Héctor Gómez Herrero via Flickr (Creative Commons License)

Is replacement level fertility really the best for society? Maybe not, say IIASA researchers. Photo Credit: Héctor Gómez Herrero via Flickr (Creative Commons License)

When asked what a desirable fertility level for populations might be, most politicians, journalists, and even social scientists would say it is around two children per woman, as this would – on the long run – prevent a population from either exploding or dying out. Other reasons for championing replacement level fertility include maintaining the size of the labor force and stabilizing the dependency ratio. But what is the evidence for this rule of thumb?

My colleague Wolfgang Lutz and I aimed to answer this question in a new study published in the journal Demographic Research. We found, not surprisingly, that the optimal fertility level strongly depends on what you mean by optimal.

The criteria for optimal fertility have often been motivated by nationalistic desires for larger and thus more powerful nations. Today our concerns run more towards the dangers of overpopulation for the environment, the climate, and the limited resources on Earth, dampening the enthusiasm for high fertility rates. But as fertility rates fall in many countries around the world, there is a growing concern about aging populations and an increasing number of elderly depending on an ever smaller number of people actively participating in the labor force.

While all of these fears relate to the same problem – an unbalanced population age-structure – the resulting assessments of what level of fertility would be desirable completely ignore the heterogeneity of the population with regard to important demographic characteristics, especially the population’s education structure.

In our study, we wanted to account for the fact that more education not only has higher economic costs, including later entry to the labor market and higher life expectancy, which can hardly been seen as a negative effect. But education also leads to higher productivity, less unemployment, and a healthier workforce that would on average retire later. To include these factors in our assessment, we ran thousands of simulations using varying constant rates of fertility.

What we found is that when we factor in education, the level of fertility that on the long run would lead to the lowest level of dependency is well below the supposedly magical level of two children per woman.

We also tried to link the effects of different fertility rates to the resulting environmental burden by factoring in expected carbon emissions. Not surprisingly, higher rates of fertility lead to faster population growth and more emissions. That suggests that an environmentally aware society should aim for even lower fertility levels.

While our research is not intended to prescribe fertility levels for individuals and countries, the conclusions drawn from this thought experiment suggest that the widespread popular notions that current fertility levels–for example in France or the US are just right because they are around replacement level, whereas they are too low in countries like Germany or Austria–may be wrong. According to our new study, the opposite is true.

Reference
Striessnig, E, Lutz W. (2014) How does education change the relationship between fertility and age-dependency under environmental constraints? A long-term simulation exercise Demographic Research, 30(16):465-492 http://www.demographic-research.org/volumes/vol30/16/

Note: This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.

How can Europe cope with multiple disaster risks?

Interview with IIASA risk expert Nadejda Komendantova

In a new study, IIASA Risk, Policy, and Vulnerability Program researcher Nadejda Komendantova and colleagues from Germany and Switzerland examined how natural hazards and risks assessments can be incorporated into decision-making processes in Europe on mitigation of multiple risks. 

A cyclist rides along the flooded Danube River in Braila, Romania, in 2010. Credit: cod_gabriel on Flickr

A cyclist rides along the flooded Danube River in Braila, Romania, in 2010. Credit: cod_gabriel on Flickr

Why did you decide to conduct this study?
European decision makers currently have a number of methods that they can use to assess natural hazards and risks and apply to the decision-making process. These methods include risk and hazard assessments, probabilistic scenarios, and socio-economic and engineering models.  The variety of tools is enormous and volume of knowledge and data is growing. However, the process of communication  between science and practice leaves a lot of open questions for research.

Researchers have developed a few tools to provide multiple risk assessment of a given territory. But even though these models have been tested by operational and practicing stakeholders, there is limited information about how useful the models are for civil protection stakeholders to use in practice.  In order to communicate results from science to practice and make it possible for decision-makers to use such tools, it helps to involve decision-makers in the development process. Participatory modeling, which is an important part of risk governance, allows us to not only to take into consideration the facts, but also values and judgments that decision-makers bring to their actions.

What questions did you aim to answer in your study?
The decision-making process becomes even more complex when we talk about situations with multiple risks – multi-risks – which involve interactions between several risks. How will decision-maker will prioritize their actions on risk mitigation or on resources allocation when facing not single but multiple risks? We also wanted to find out if the tools developed by science such as decision support models could be suitable for these tasks. Another question is if there are differences in perceptions of the usability of decision-support tools between different stakeholders, such as academia (based on more theoretical considerations) and civil protection (based on practice).

What are the multiple risks or hazards that face Europe?
Across Europe, people suffer losses not just from single hazards, but also from multiple events in combination. The most important hazards for Europe are earthquakes, landslides, volcanic eruptions, tsunamis, wildfires, winter storms, and floods along both rivers and coastlines.

What methods did you use to conduct your study?
To answer our research questions we collected feedback from civil protection stakeholders on existing risk and hazard assessment tools as well as on the generic multi-risk framework to understand interrelations between different risks, such as conjoint and cascade effects. The new study was based on a method developed by Arnaud Mignan at ETH Zürich, with a decision-support tool developed by Bijan Khazai at the Karlsruhe Institute of Technology. Through a participatory approach, the decision-support tool allowed  stakeholders to assign relative importance to the losses for different sectors for each of the scenarios likely to occur in the region.

We collected data through questionnaires on existing risk assessment tools in Europe and their implementation. Then, using the new framework, we conducted focus group discussions in Bonn and Lisbon, and decision-making experiments applying the developed tools. Afterwards we had a chance to collect feedback from stakeholders.

What did you find?
The study showed that general standards for multi-risk assessment are still missing—there are different terminologies and different methodologies related to data collection, monitoring, and output. According to stakeholders from practice, this variety of data, assessment methods, tools and terminology might be a barrier for implementation of the multi-risk approach.

The study also found a sharp divide in understanding of the usability of the tools and areas for their application. Academic stakeholders saw the risk-assessment tools as being useful to understand loss and communication of multi-risk parameters. The stakeholders from practice instead saw  the tool as more useful for training and educational purposes as well as to raise awareness about possible multi-risk scenarios.

What should be done to help decision-makers make better decisions?
The study made it clear that we need to work on training and education, both for policymakers and the public. The models we have developed could be useful for educating stakeholders about the usefulness of a multi-risk approach, and to disseminate these results to the general public. It was recommended to use the tools during special training workshops organized for decision-makers on multi-risk mitigation to see possible consequences of a multi-hazard situation for their region. Participatory modeling, involving cooperation between scientists and decision-makers from practice, could not only improve communication processes between science and policy. In addition, decision-support models can become a part of dialogue to help to avoid judgment biases and systematic errors in decision-making and to help in complex decision-making process grounded on human rationality and judgment biases.

Reference:
Nadejda Komendantova, Roger Mrzyglocki, Arnaud Mignan, Bijan Khazai, Friedemann Wenzel, Anthony Patt, Kevin Fleming. 2014. Multi-hazard and multi-risk decision support tools as a part of participatory risk governance: Feedback from civil protection stakeholder. International Journal of Disaster Risk Reduction. http://www.sciencedirect.com/science/article/pii/S221242091300068X

Note: This article gives the views of the interviewee, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.