Towards a step-change for dealing with critical risks ‘beyond’ adaptation and the Loss and Damage policy debate.

Making use of mutuality-solidarity-accountability-transparency principles

By Teresa M. Deubelli, researcher in the IIASA Risk and Resilience Program and Reinhard Mechler, Deputy Program Director IIASA Risk and Resilience Program

The Warsaw International Mechanism (WIM) for Loss and Damage and its ongoing review were hot topics at COP25. Hopes for a step-change on the issue of finance to scale up action and support have not been translated into action. Negotiating Parties remain divided over the way forward and the question of what kind of finance and for whom. We suggest to build on principles of risk governance, including insurance, and international cooperation  – mutuality, solidarity, accountability and transparency – and to combine these in novel ways in order to upscale action on both averting and minimizing as well as addressing loss and damage under the WIM in a manner that truly shows responsibility for responding to the climate crisis.

COP25 Madrid, Spain © Reinhard Mechler | IIASA

 Why do we need a step-change on Loss and Damage finance?

Hard limits to adaptation are creating situations beyond adaptation; think for example of communities fleeing desertification or sea-level rise that can only retreat so far. The WIM has made substantial strides on its objectives to advance knowledge and exchange since its creation, but now the time is ripe to take the necessary steps to also move forward on addressing loss and damage from climate change.

So far, this third WIM priority has mostly been addressed through insurance approaches, such as the Fiji Clearing House. While there is value in scaling up risk transfer options, insurance comes with drawbacks: insurance premium costs often exceed financial capacities of vulnerable groups or may result in a false sense of protection that undermines further resilience-building action. Additionally, risk transfer options remain focused on sudden onset events.

Loss and damage from climate change is not just linked to sudden events; sea-level rise, desertification, and glacial melting take years to unfold, but once these tipping points are reached, recovery and reconstruction, and thus the typical logic of humanitarian assistance, are out of the question. As the climate crisis spirals forward tipping points may be reached sooner than expected, also challenging the sustainability of resilience building actions within the framework of development cooperation

How to make a principled case to generate support for addressing loss and damage?

Most vulnerable countries agree that the WIM needs to advance on enhancing action and support for addressing loss and damage from climate change. Discussions at COP25 focused heavily on the issue of mobilizing finance for addressing loss and damage, but little headway was made, as views on the exact modalities of finance and its access differ vastly amongst Parties. Unfortunately, this means that the ongoing WIM review faces a certain risk of replicating the stalemate that characterised the Paris Agreement negotiations on the question of liability, when notions of compensatory justice were crossed out from Article 8 at the request of several developed, high emitting countries.

In order to propel the discourse forward in future rounds of climate talks and in the WIM review, We suggest to build on principles of risk governance, including insurance, and  international cooperation  – mutuality, solidarity, accountability and transparency – and to combine these in novel ways in order to upscale action on both averting and minimizing as well as addressing losses and damages under the WIM:

  • As the underlying insurance principle, mutuality is found in risk pooling and sharing – several parties pool funding to mobilize finance for offsetting losses in times of crisis, essentially spreading out and mutualizing risks across participants.
  • Solidarity describes the shared responsibility for supporting others in times of hardship. As a principle it underpins development cooperation and humanitarian assistance and is at the heart of the Agenda 2030.
  • Accountability links actions with outcomes in a mutually responsible relationship and is motivated by a perceived ethical or legal obligation for supporting each other in addressing climate-attributed loss and damage.
  • As a transversal principle, transparency adds itself as a critical enabler of a finance architecture that expands the WIM to support those who are suffering loss and damage in ways that cannot be addressed through business-as-usual.

All principles lend themselves to the WIM as a ground for advancing on its priority to enhance action and support for addressing loss and damage from climate change, but also offer inspiration for thinking out novel ways to advance further.

What could this mean concretely?

These deliberations are not merely theoretical in nature but are seeing attention. For example through the further development of the (ARC) pool, a regional drought pool established in 2012 as a specialised agency of the African Union to help member states improve their planning, preparation and response capacities. Disbursements from the pool support participating governments’ drought relief efforts, with requirements on how these are used (transparency and accountability).

Initial donor funding (solidarity) and ARC member annual premium payments (mutuality) capitalise the ARC. The pool is currently preparing for the launch of an additional capitalization mechanism, the Extreme Climate Facility (ARC-XCF). This would issue climate catastrophe bonds, resulting in pay-outs whenever the index tracking frequency and magnitude of droughts and extreme temperature exceeds a predefined threshold (transparency). While using the capital markets to access additional funding needs, accountability for climate change is factored in to some extent through the international support divested to setting up the mechanism.

The ARC-XCF is one way to address loss and damage and offers practical inspiration for setting up facilities for addressing loss and damage under the WIM. Especially where hard limits are pushed beyond adaptation and traditional insurance is no longer feasible, drawing on the experience from such risk pooling facilities can be useful input for setting up a specific facility under the WIM that supports those at the frontiers of climate change.

In doing so, it will be important to keep the principles of international cooperation and insurance – mutuality, solidarity, accountability and transparency – in mind to equitably address loss and damage, especially where risks are increasingly intolerable and beyond adaptation.

References:

Deubelli, T.  and Mechler, R. (2019). Finance for Loss & Damage: Towards a comprehensive principled approach, unpublished.

Linnerooth-Bayer, J. Surminski, S., Bouwer, L., Noy, I., Mechler, R., McQuistan, C. (2018). Insurance as a Response to Loss and Damage? In: Mechler R, Bouwer L, Schinko T, Surminski S, Linnerooth-Bayer J (2018). Loss and Damage from climate change. Concepts, methods and policy options. Springer, Cham: 483-512

Mechler R, Bouwer L, Schinko T, Surminski S, Linnerooth-Bayer J (2018). Loss and Damage from climate change. Concepts, methods and policy options. Springer, Cham.

This blog is reposted from a Flood Resilience Portal blog.

Note: This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.

Understanding climate change as an everything issue

Award-winning climate communicator Katharine Hayhoe, an atmospheric scientist, professor of political science at Texas Tech University, and director of the Climate Center, discusses the importance of effective science communication in overcoming barriers to public acceptance of climate change in a recent interview with Rachel Potter, IIASA communications officer.

© Chris.Soldt | Boston College.MTS.Photography

Q: Can you tell us a bit about your specific areas of research as a scientist? 

I study what climate change means to people, in the places where we live: how it is affecting our water supply, our health, our air quality, the integrity of our infrastructure, and other human and natural systems. Often when people think about climate change they think about polar bears or people who are living on low-lying islands in the South Pacific. I bring climate change down from the global scale to the local level because when we understand that it is an ‘everything issue’, that’s when we understand that we need to act.

Q: You have been widely recognized as a remarkable communicator. What do you see as key to effective science communication?

I believe effective communication begins with connecting and identifying shared values, and ends with talking about solutions. With climate change, sometimes people are overt in their opposition by outright saying the science isn’t real. More often however, it is passive opposition where people feel the problem is too big and there is nothing they can do to fix it. We need to present people with solutions that are practical and viable – in other words, actions that they can engage in.

Q: Why is science communication important?

Science communication explains how the world works. Today we are conducting an unprecedented experiment with our planet, the only one we have. Understanding this is one of the most important things anyone can do as a human being living on Earth.

Q: Can you briefly outline what you see as trends in public and political opinion with regard to human-induced climate change?

Our world is becoming increasingly polarized and we are dividing into tribes. It is happening with many issues and in many places around the world. When the world is changing so quickly, many of us feel uncomfortable with the rate of change, so we retreat to a more tribalized, divided society where we feel comfortable. But by doing so, we focus on the tiny fraction of what divides us rather than the vast preponderance of what unites us, because it makes us feel more secure to do so.

Climate change is a casualty of this fracturing, tribalism, and polarization that is happening – most notably in the US because there are only two political parties, so the tribalization there is much more obvious. In the US, the best predictor of whether people agree with the facts that: climate is changing, humans are responsible, and the impacts are serious, is not how much they know about science, it’s simply where they fall on the political spectrum. This politicization of science is also happening in the UK, Austria, across Europe, Canada, Australia, and Brazil.

© IIASA Katherine Hayhoe with members of the IIASA Women in Science Club

Q: How can this polarization and the barriers to dealing with climate change be challenged?

Climate change is a human issue – it doesn’t care if we are liberal or conservative, rich or poor, although the poor are being more affected than the rich. It affects all of us and almost everything we care about. For that reason, we must emphasize what unites us rather than what divides us. We need to challenge the idea that the solutions to climate change pose a bigger threat to our wellbeing, our comfort, the quality of our lives, our identity and who we are, than the impacts.

We must expose the myths that underlie inaction around climate change and examine them in an objective way. Will it really ruin our economy to fix climate change? Will it take us back to the Stone Age? If we don’t tackle the myths directly, they will continue to thrive in our sub-conscious. For example, in Canada there is an idea that a carbon tax will destroy the economy. I like to point out that there were four provinces in Canada that had a price on carbon before it became a federal policy, and those four provinces have led the country in terms of economic growth and output.

Q: What part do you see IIASA playing in being able to build bridges between countries across political divides? 

IIASA stands in a key position at a pivotal time. It is a truly international organization in terms of its mandate, structure, governance, and the people that work here. Climate change is a global problem and IIASA is a global institution that can offer both big-picture and regionally-specific insights into climate impacts and solutions.

Katharine Hayhoe visited IIASA on 4 October 2019 to give a lecture titled, Barriers to Public Acceptance of Climate Science, Impacts, and Solutions, to IIASA researchers and to meet with the IIASA Women in Science Club. IIASA has a worldwide network of collaborators who contribute to research by collecting, processing, and evaluating local and regional data that are integrated into IIASA models. The institute has 819 research partner institutions in member countries and works with research funders, academic institutions, policymakers, and individual researchers in national member organizations.

Note: This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis

Environment and health: Two sides of the same coin

By Luiza Toledo, IIASA Science Communication Fellow 2019

2019 YSSP participant Rory Gibb discusses his work at IIASA developing models to understand the effects of future land use, climate, and socioeconomic change on disease risk, focusing on Lassa fever in West Africa as a case study.

© Seth Doyle | Unsplash

Climate change is a fact and one of the most important environmental changes that populations will face in the coming decades. Changes in areas such as agriculture, energy, economics, and biodiversity, together with other natural and human-made health stressors, influence human health and disease in numerous ways. This is evident in the fact that the emergence and spread of many infectious diseases is on the rise, many of them transmitted from wildlife to humans – a trend that has been associated with the environmental changes we are currently experiencing. Warmer average temperatures can mean longer warm seasons, earlier spring seasons, shorter and milder winters, and hotter summers, during which the prevailing conditions may affect the population cycles of hosts, vectors (such as mosquitoes and ticks) and pathogens, thus increasing the incidence of certain vector-borne or zoonotic diseases. Changes to land use, such as expansion of agriculture, can impact ecological communities and bring people into greater contact with wildlife, again potentially facilitating the spread of pathogens.

Rory Gibb, a 2019 Young Scientists Summer Program (YSSP) participant, is doing research to understand how global environmental changes – and in particular interactions between land use and climate change – affect zoonotic (animal-borne) infectious diseases. He applied for the YSSP this summer because of the institute’s research portfolio in different dimensions of human wellbeing, including poverty and inequality, food security, and water resilience. He hopes to contribute a dimension about infectious diseases.

©Liebentritt_Christoph | IIASA

Gibb is interested in understanding how the same kind of environmental pressures that affect biodiversity and ecosystems, such as agricultural expansion, intensification and urbanization, may also impact human health. He points out that even though many infectious diseases are widely studied, such as dengue fever and malaria, we still have a patchy understanding of the environmental factors driving many more neglected or recently emerging diseases – as is the case with Lassa fever, which occurs only in West Africa.

Lassa fever is an acute viral hemorrhagic illness recognized by global health institutions as an important rodent-borne disease, however, many important aspects of the disease’s ecology, epidemiology, and distribution remain poorly understood.

“We know that the spread of Lassa fever is very dependent on the environment, so it is sensitive to climate change, land use change, and other ecological changes, but we don’t have a very clear understanding of where it occurs and how many people are being affected every year,” Gibb explains.

Gibb aims to use current knowledge of the local ecological processes that drive the disease, including spatial modeling to determine the extent of the disease’s rodent reservoir host and its interactions with people, to develop a better understanding of the number of people infected with Lassa fever in West Africa. His YSSP project is focused on understanding how sensitive current patterns of disease risk may be to plausible future agricultural, climatic, and economic change in the region. To do this, he is projecting disease risk over large geographical areas using remotely sensed data on climate and landscape factors, and evaluating the effects of future socio-environmental scenarios on the predicted incidence of human disease. Ultimately, he is interested in how to develop better models to understand the relationship between environmental change and diseases caused by bacteria, viruses, and parasites that spread between humans and animals. He hopes that his research outcomes can help to guide disease surveillance efforts for policymakers.

“The spatial modeling work that I am doing will hopefully be useful in terms of giving some insight into regions of West Africa that are predicted to have a very high risk for Lassa fever, both now and under expected environmental changes, to assist in targeting public health interventions such as improving diagnostic test access. We can also identify important knowledge gaps, such as areas that are highly environmentally suitable for Lassa transmission, but in which the disease is apparently absent – these may be useful locations for intensified surveillance, or for showing that there are other ecological or epidemiological processes occurring that we are not accounting for.”

The impacts that environmental changes have on our health remind us how dependent we are on nature and how our own health depends on that of the environment. Environmental and human health cannot and should not be seen as two separate things.

“I want to do work that highlights the importance of understanding human dependence on nature and the necessity of understanding how we can preserve the health of both ecosystems and people,” Gibb concludes.

Note: This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.

Enhancing urban resilience through nature-based solutions

By Luiza Toledo, IIASA Science Communication Fellow 2019

2019 YSSP participant Regina Buono investigates how the law can support or impede the use of nature-based solutions and help facilitate adaptation to climate change.

Recognizing the need for a systemic change is the first step to overcoming environmental challenges like climate change. In theory, governance systems can be designed and arranged to facilitate and embrace adaptation to climate change. Developing a legal framework that supports such an adaptation is, however, a big challenge. Learning how to manage the environmental crisis we currently find ourselves in while still being able to grow economically further complicates matters. According to Regina Buono, a participant in this year’s IIASA Young Scientist Summer Program (YSSP), nature-based solutions could be an alternative option that offers a multitude of benefits in terms of how this dual goal of economic growth and sustainability can be achieved. Buono’s research will contribute to IIASA as a partner in the EU Horizon 2020 project, PHUSICOS, which is demonstrating how nature-based solutions can reduce the risk of extreme weather events in rural mountain landscapes.

Outdoor green living wall, vertical garden on modern office building | © Josefkubes | Dreamstime.com

Nature-based solutions are actions to protect, manage, or restore natural ecosystems that address societal challenges, such as water security, pollution, or natural disasters – sometimes simultaneously. These solutions take advantage of the system processes found in nature – such as the water regulation function of wetlands, the allowance of natural space in floodplains to buffer flooding impacts, water storage in recharged aquifers, or carbon storage in prairies – to tackle environmental problems. This concept is now widely used to reframe policy debates on biodiversity conservation, climate change adaptation and mitigation strategies, urban resilience, as well as the sustainable use of natural resources.

As part of her research, Buono is exploring how the law can support or impede the use of nature-based solutions and considering how we can make legal systems more adaptive so they can help facilitate societal adaptation to a more uncertain world under ongoing and future climate change.

“My research is about using the law as a tool that works for us, rather than one that, because of its historic interest in stability, gets in the way,” she says.

Regina Buono, YSSP participant. | © Buono

Buono started her career as a lawyer based in the US. In her first job she was assigned to work with water issues and according to her, it was “love at first sight”. Following that first assignment, she continued to work on finding market-based solutions for issues related to endangered species. She decided to pursue a PhD in public policy in 2016, and soon after was asked to join the external advisory board to the Nature Insurance Value: Assessment and Demonstration (NAIAD) project in Europe. While attending the first meeting, she realized that there were no lawyers or legal scholars among the project researchers. As a lawyer, she could see that there was a gap in understanding how law and regulations would impact the uptake, development, and proliferation of nature-based solutions.

Working with NAIAD, she developed her PhD dissertation to address this gap and advance understanding around the role of the law in nature-based solutions, both in terms of governance in implementation and practice and the potential for governance innovation that better supports and promotes future adaptation.

“My YSSP project here at IIASA focuses on the city of Valladolid, Spain, and examines the legal context around the implementation of a collection of nature-based solution projects. I am trying to draw insights from these that could perhaps also be applied to other cases,” she explains.

Buono is doing a critical qualitative study that integrates analyses of interviews and policy documents using NVivo, a qualitative data analysis computer software package specifically designed to work with very rich text-based and/or multimedia information, together with legal analysis. She says that there is still a lot of work to be done to adapt to climate change and an interdisciplinary cross-sector effort will be necessary.

The preliminary results from her YSSP research point to a number of constraints and facilitating factors related to law and regulation. She says that the lack of explicit legal authorization for nature-based solutions that she identified in her study, strict water quality regulations, and bureaucratic hurdles could be some of the factors that constrain the implementation of nature-based solutions. However, flexibility in the law and a polycentric governance structure was identified as facilitating factors that encourage local entities to opt for nature-based solutions.

Buono hopes that her research will help decision makers to assess and address legal components that guide, structure, or impede the use of nature-based solutions, and to consider how the law could be evolved to create a more enabling environment for more adaptive governance arrangements that would better support nature-based solutions.

“Our policies and infrastructure are going to have to change to be able to deal with the impacts that we are already experiencing. Nature-based solutions and a shift toward adaptive governance could help us navigate more gracefully in these important transitions,” she concludes.

Note: This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.

Rescuing the world from drowning

By Julian Hunt, IIASA postdoc

Possible location where the barriers could be installed © Anna Krivitskaia | Dreamstime.com

Sea level rise is one of the most challenging impacts of climate change. The continued rise in sea levels, partially caused by the melting of the ice sheets of Greenland and Antarctica, will result in large scale impacts in coastal areas as they are submerged by the sea. Locations not able to bear the costs of implementing protection and adaptation measures will have to be abandoned, resulting in social, economic and environmental losses.

The most important mitigation goal for sea level rise is to reduce or possibly revert carbon dioxide (CO2) emissions. Given the time lag between emission reductions and the impacts of climate change, new adaptation measures to reduce sea level rise should be proposed, developed and if possible, implemented.

A proposal that I developed during my D.Phil degree ten years ago, which resulted in a paper on the Mitigation and Adaptation to Global Change Journal1, shows that submerged barriers in front of ice sheets and glaciers would contribute to reducing the ice melt in Greenland. Edward Byers and I propose the construction of ten barriers at key glaciers in Greenland to stop the flow of warm salty ocean water reaching glaciers in Greenland and Atlantic, which are the main contributors to ice melting. This could reduce sea level rise by up to 5.3 meters at a levelized cost of US$275 million a year. The cost of the barriers is only a fraction of the estimated costs of adaptation measures to sea level rise around the world estimated to be US$1.4 trillion a year by 21002.

The barrier consists of several plain sheet modules of marine grade steel around 200 mm thick connected to cylindrical steel tubes with air inside to keep the barrier floating. The depth of the barriers varies from 30 – 500 meters and the required length to stop the sea water from entering the fjords, where the glaciers are located. As no such barrier has been developed before, we propose three main steps for the construction of the barrier:

  1. The barrier components should be transported to the designated location during the summer, when there is no ocean ice cover and the access to the location of the barrier is less challenging. Also during the summer, mooring structures should be added.
  2. During the winter, the barrier is assembled over the frozen ice cover.
  3. During the next summer, the ice cover will melt again and the barrier will float above the place where it is should be fixed. The mooring chains attached to the barrier will pull the barrier into place, using the mooring structures in the ground.

The concept of reducing the contact of seawater and glaciers to reduce ice sheet melting was first published by Moore in Nature3, and Wolovick in The Cryosphere4 with the construction of submerged dams. A graphic representation of the concept is presented in Figure 1. As you can see the barriers should be positioned just after the glacier cavity, where the depth required for the barrier would be the smallest. Our cost analysis shows that using submerged barriers would have one or two orders of magnitude lower costs when compared to submerged dams. Additionally, submerged barriers could be easily removed, if the need arise.

Figure 1. (a) Proposed location of the submerged barrier or dam, (b) submerged barrier characterizes, (c) submerged dam characterizes.

There are several issues involving the implementation of these barriers that should be considered before they are built. The reduction of ice melt in Greenland glaciers will contribute to an increase in seawater temperature and salinity of the Arctic Ocean, which will have a direct impact on the region’s biosphere, climate and ocean currents. The superficial ice cover in the Arctic will be considerably reduced. This would allow a new maritime route for ships to cross the Arctic Ocean, increase the absorption of CO2 by the Arctic Ocean, due to the increase in the ice free surface area and the cold seawater temperature, and the increase in radiation heat from the Arctic Ocean into space. Ice is a strong thermal insulator. Without the Arctic Ocean ice cover the temperature of the region and the heat radiated from the Earth to space will considerably increase, which could have a higher impact in cooling the Earth than the ice cover’s albedo effect. Thus, the reduction of the Arctic Ocean ice cover could contribute to reducing the overall CO2 concentration of the atmosphere and reducing the Earth’s temperature.

This solution, however, should not be used as an excuse to reduce focus on cutting CO2 emission. If the world continues to warm, not even submerged barriers in front of glaciers would be able to stop ice sheets melting and sea level rise.

References:

  1. Hunt J, Byers E (2018) Reducing sea level rise with submerged barriers and dams in Greenland. Mitigation and Adaptation Strategies for Global Change DOI: 10.1007/s11027-018-9831-y.   [pure.iiasa.ac.at/15649]
  2. Jevrejeva JS, Jackson LP, Grinsted A, Lincke D, and Marzeion B (2018) Flood damage costs under the sea level rise with warming of 1.5 ◦C and 2 ◦C. Environmental Research Letters DOI: 10.1088/1748-9326/aacc76
  3. Moore J, Gladstone R, Zwinger T, and Wolovick M (2018) Geoengineer polar glaciers to slow sea-level rise. Nature: https://go.nature.com/2GoPcGp
  4. Wolovick M, Moore J (2018) Stopping the flood: could we use targeted geoengineering to mitigate sea level rise? The Cryosphere DOI: 10.5194/tc-12-2955-2018

How culture affects perceptions of climate change related technology

By Farid Karimi, independent researcher and IIASA alumnus

There is consensus that the current trend of energy consumption growth and CO2 emissions cannot continue if global warming is to be tackled. Many countries have considered carbon capture and storage (CCS) for addressing climate change. CCS is a technology that mitigates CO2 emissions by removing CO2 from the atmosphere and storing it in carbon sinks–in other words, in an environment or reservoir that has the ability to “store” CO2–such as depleted oil and gas fields.

The Intergovernmental Panel on Climate Change has emphasised that it is not possible to ‘limit likely warming to below 2°C if bioenergy, CCS, and their combination (BECCS) are limited’, while the International Energy Agency has stated that ‘CCS must be part of a ‘strengthened global climate response’. Even if one does not consider the energy sector, CCS is almost the only way to reduce CO2 from the cement and steel industries. Nonetheless, CCS is a controversial technology. There is notable opposition to and different perceptions of the technology among stakeholders and we also know that the reaction of the public to CCS will considerably affect the development of the technology in democratic countries. Therefore, it is important to understand these diverse perceptions and their roots.

Photo by Thomas Hafeneth on Unsplash

In our research, we looked at this controversial technology from a cross-cultural perspective. Previous research has identified general and local mechanisms in how the general public reacts to CCS and researchers have also noticed that there are differences between countries, but the effects of cross-cultural differences had not previously been explored in detail. In our study, which was recently published in the International Journal of Greenhouse Gas Control, we argue that it is crucial to understand how public perceptions of a particular technology emerge and form in their individual contexts or how perceptions are embedded in large-scale cultural frameworks.

Our results show that the effects of individual level variables such as familiarity with technology, or sociodemographic variables such as education, are important, but their effects are likely mediated and confounded by the cultural setting. We found that in parallel with other factors such as trust, cultural dimensions such as uncertainty avoidance and the society’s short-term or long-term orientation affect risk perception. Uncertainty avoidance can be described as the extent to which members of a society feel uncomfortable with uncertain, unknown, ambiguous, or unstructured situations. Long-term orientation on the other hand, refers to a society that fosters virtues and is oriented towards future rewards, in particular perseverance and thrift.

High uncertainty avoidance, for instance, leads to higher risk perception because among nations with a strong uncertainty avoidance index, there is a mentality of “what is different is dangerous”. Moreover, countries that demonstrate a long-term orientation might express a higher level of risk perception concerning the technology because people from these countries place more value on thrift, which implies being more careful about investing in risky or uncertain matters. In addition, investment in real estate is a notable feature of such societies, and this is closely tied to the issue of NIMBY­ – an acronym for the phrase “not in my back yard”, denoting opposition by residents to a proposed development in their area – which is one of the most important controversies related to CCS. For example, Germany has a very high long-term orientation, so Germans have serious concerns about the effect of CCS on the real estate market and about having CCS facilities in their region.

All in all, our work provides a framework to understand why and how societies challenge the technology. Cultural differences and lack of consideration for them have in the past caused the failure of negotiations or implementation of some projects. Our study is a contribution to the field and could be used to understand how cross-cultural differences operate in the realm of sustainable energy technology.

Reference:

Karimi F and Toikka A (2018). General public reactions to carbon capture and storage: Does culture matter? International Journal of Greenhouse Gas Control 70:193-201

Note: This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.