By Matthias Wildemeersch, IIASA Advanced Systems Analysis and Ecosystems Services and Management Programs
FotoQuest Austria is a citizen science campaign initiated by the IIASA Ecosystems Services & Management Program that aims to involve the general public in mapping land use in Austria. Understanding the evolution of urban sprawl is important to estimate the risk of flooding, while the preservation of wetlands has important implications for climate change.
But how can we engage people in environmental monitoring, in particular when they are growing increasingly resistant to traditional forms of advertising? Viral marketing makes use of social networks to spread messages, and takes advantage of the trust that we have in the recommendation coming from a friend rather than from a stranger or a company.
Network science and the formal description of spreading phenomena can shed light on the propagation of messages through communities and can be applied to inform and design viral marketing campaigns.
Network science is a multi-disciplinary field of research that draws on graph theory, statistical mechanics, inference, and other theories to study the behavior of agents in various networks. The spreading phenomena in viral marketing show similarities with well-studied spreading processes over biological, social, physical, and financial networks. For instance, we can think about epidemics,which are well understood and allow for the design of optimal strategies to contain viruses. Another example is opinion dynamics, which received renewed research attention over the last years in the context of social media. In contrast to diseases or computer viruses, which we aim to contain and stop, the goal of viral marketing is to spread widely, reaching the largest possible fraction of a community.
What makes viral marketing unique?
But some aspects of viral marketing are very different from what we see in other spreading phenomena. First of all, there are many platforms that can be used to spread information at the same time, and the interaction between these platforms is not always transparent. Human psychology is a crucial factor in social networks, as repeated interaction and saturation can decrease the willingness to further spread viral content. Marketing campaigns have a limited budget, and therefore it is meaningful to understand how we can use incentives and how efficient they are. This also means that it is essential to find the group of most influential people that can be used as seeds for the viral campaign.
Network science has addressed to a great extent all these individual questions, mostly under the assumption of full knowledge of the connections between the agents and their influence. Currently, so-called multiplexes are an active research field that studies the behavior of multi-layer networks. This research unveils the relationships between the dynamics of viral marketing, the connection pattern, and strength between the network layers. Although viral spreading may be unachievable in a single layer, for example a social network like Facebook, the critical threshold may be exceeded by joining different platforms. Within a given platform, people alike can be clustered using community detection algorithms. Once the communities are identified, influence maximization algorithms have been established to select these persons that maximize the spread of viral content. Although this discrete optimization problem is computationally difficult—or NP-hard—mathematicians have proposed algorithms that can efficiently predict who to target to give a campaign the best chance of going viral. On top of that, optimal pricing strategies have been developed to reward recommenders.
Although the literature is extensive, the nature of the results is often theoretical and involves mathematically complex models and algorithms. Considering that only partial information on the network is usually available, it is not straightforward to bring this knowledge back to a practical marketing campaign. So researchers in this field are trying to bridge the gap between theoretical results and practical problems. The generic, powerful methods of network science are sufficiently versatile to capture the specifics of real-world applications. As such, network science can provide guidelines that can bring great value for the design of heuristic methods in marketing strategies.
Note: This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.
You must be logged in to post a comment.