Accounting for land use in EU climate policy

By Hannes Böttcher, Senior Researcher, Öko-Institut, previously in IIASA’s Ecosystem Services and Management Program

In or out?  Debit or credit? The role of the land use sector in the EU climate policy still needs to be defined

The EU has a target to reduce greenhouse gas emissions by at least 40% by 2030. This is an economy-wide target and therefore includes the land use sector, which includes land use, land use change and forestry. The EU is currently in the process of deciding how to integrate land use into this target. This is not an easy task, as we show in a new study.

© Souvenirpixels | Dreamstime.com

Land use includes activities, such as logging, that can release greenhouse gases into the atmosphere. But the sector also includes other processes that can remove greenhouse gases from the  atmosphere. Accounting for these processes is a complicated task. © Souvenirpixels | Dreamstime.com

The land use sector has several particularities that make it different from other sectors already included in the target, such as energy, industrial processes, waste, and agriculture. The most specific particularity is that the sector includes activities that cause emissions but also can lead to carbon being removed from that atmosphere, and taken up and stored in vegetation and soil. However, this removal is not permanent. Harvesting trees, and burning wood releases the carbon much more quickly than it was stored. Another particularity is that not all emissions and removals are directly caused by humans. This is especially true for removals from forest management.

In the past, the EU reported that uptake and storing of carbon through land use activities was higher than emissions from this sector. The European land use sector thus acted as a relatively stable net sink of emissions at around -300 to -350 Megatons (Mt) CO2 per year. But this might change in the near future: projections show the net sink declining to only 279 Mt CO2 in 2030.

Adding up carbon credits and debits
The emissions and removals that are actually occurring in the atmosphere are not exactly those that are currently accounted for under the Kyoto Protocol. Rather complicated rules exist that define what can be counted as credits and debits. Depending on how these rules develop, the EU sink may be accounted for to a large degree as a credit, or it could turn into a debit because the sink is getting smaller compared to the past. It is not likely that the entire sink will be turned into credits. Especially for the management of existing forests, which contributes a lot to the net sink, negotiators of the Kyoto Protocol have developed special accounting rules for the time before 2020. Under these rules, carbon credits only count if measured against a baseline.

The rules for the time after 2020 have not yet been agreed, however, as the Kyoto Protocol ends in 2020. In order to assess the impact of including the land use sector in the EU target in our new study, we had to make different assumptions, for example about how much wood we will harvest, the development of emissions and removals, and what the baseline for forest management should be. We then applied the existing Kyoto rules and alternative rules and assessed their impact on the level of ambition required to meet the EU’s target. It quickly became obvious: the assumptions we make and the rules we apply have very large implications for the 2030 Climate and Energy Framework.

One option of including land use discussed by the Commission is to take agriculture emissions out of the currently existing framework of the so-called ESD (an already existing mechanism to distribute mitigation efforts among EU Member States for specific sectors such as transport, buildings, waste and agriculture) and merge it with land use activities in a separate pillar. In our study we estimated the net credits that the land use sector could potentially generate, and found these credits could be as high as the entire emission reduction effort needed in agriculture. This would mean that in agriculture no reductions would be needed if the credits from land use were exchangeable between the sectors.

The impact on thannes-fighe target of 40% emissions reductions can be more than 4 percentage points if land use is included and the rules are not changed. This means that the original 40% target without land use would be reduced to an only 35% target. Other sectors would have to reduce their emissions less because land use seems to do part of the job. The target as a whole would thus become much less ambitious than it currently is. But this does not need to be the case. If accounting rules are changed in a way to account for the fact that the sink is getting smaller and smaller, land use would create debits. Including debits in the target would make it a 41% target instead and increase the overall level of ambition. This would be bad for the atmosphere because effectively emissions would not be reduced as much as needed.

It thus all depends on assumptions and rules. Before the rules are announced, the contribution of the land use sector cannot be quantified. Given this, we argue that the best option would be to keep land use separate from other sectors, give it separate target and design accounting rules that set incentives to increase the sink.

Reference
Böttcher H, Graichen J. 2015. Impacts on the EU 2030 climate target of inlcuding LULUCF in the climate and energy policy framework. Report prepared for Fern and IFOAM. Oeko-Institut.

Note: This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.

Uncertainty in an emissions-constrained world

By Matthias Jonas, IIASA, and  Gregg Marland, Appalachian State University

Greenhouse gas emissions are seldom measured directly. They must be estimated from data such as on energy use and changes in land use. That means that estimates of greenhouse gas emissions from human sources are inherently uncertain.

This image of Central and Eastern Europe at night was taken from the NASA, International Space Station in 2011. Image Credit: NASA

Uncertainty around emissions may mean that reaching temperature targets would require greater cuts than previously thought. Central and Eastern Europe at night, taken from the NASA, International Space Station in 2011. Image Credit: NASA

In a new study with colleagues at IIASA and the Polish Academy of Sciences, we asked how uncertainty over time will affect short-term GHG emission commitments and long-term efforts to meet global temperature targets for 2050 and beyond. The new study addresses a fundamental problem: how to combine uncertainty about current and historic emissions (diagnostic uncertainty) with uncertainty about projected future emissions (prognostic uncertainty).

The paper introduces a concept we call the Emissions, Temperature, Uncertainty (ETU) framework.The ETU framework allows any country to understand its national and near-term mitigation and adaptation efforts in a more realistic context, where uncertainty is taken into account.

The ETU assumes that cumulative emissions can be constrained over time by international agreements that are binding, but that emissions can be estimated only imprecisely, and whether or not they will achieve an agreed temperature target  is also uncertain. The ETU framework allows policymakers to understand diagnostic and prognostic uncertainty so that they can make more educated (precautionary) decisions for reducing emissions given an agreed future temperature target.

Diagnostic uncertainty refers to the uncertainty contained in current inventoried emission estimates and relates to the risk that true greenhouse gas emissions are greater than inventoried emission estimates. Prognostic uncertainty refers to cumulative emissions between a start year and a future target year and the global average temperature increase they would generate. It relates to the risk that an agreed temperature target is exceeded. In a nutshell, the ETU framework can be used to monitor a country’s performance – that is, past achievements as well as projected achievements – in complying with a future warming target in a quantified uncertainty-risk context.

While our study addresses whether or not the future increase in global temperature can be kept below 2, 3, or 4ºC targets, its primary aim is to use those targets to demonstrate the relevance of both diagnostic and prognostic uncertainty.   The paper shows:

  • Uncertainty is important in emissions: Both diagnostic and prognostic uncertainty need to be considered to facilitate better decisions on reducing emissions, given an agreed future temperature target.
  • What these risks mean for emissions targets: We find, for example, that to nullify the diagnostic uncertainty-related risk, and to maintain a similar level of risk for exceeding a 2o target, the universally valid per-capita emissions target for 2050 resulting from the underlying cumulative emissions constraint needs to be shifted downward by nearly 10%.
  • Risk and uncertainty are interdependent: This interdependence poses a challenge for decision-makers because they have to deal with uncertainty and risk simultaneously.
  • Including land-use change is tricky: Determining cumulative emissions from land use and land-use change in this emission-temperature setting is difficult, because an achievable future state of sustainability for the terrestrial biosphere has not yet been defined.

Reference
Matthias Jonas, Gregg Marland, Volker Krey, Fabian Wagner, Zbigniew Nahorski (2014).  Uncertainty in an emissions-constrained world. Climatic Change. April 2014. http://link.springer.com/article/10.1007/s10584-014-1103-6

Note: This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.

REDD+: Cutting emissions, not trees, in the Congo Basin

By Aline Mosnier, IIASA Research Scholar

Aline Mosnier

Aline Mosnier

Deforestation and forest degradation contribute substantially to greenhouse gas emissions, particularly in developing countries. The Reducing Emissions from Deforestation and Forest Degradation plus forest conservation, sustainable management of forests and enhancement of forest carbon stocks (REDD+) Initiative, launched in 2008 by the United National Framework Convention on Climate Change (UNFCCC), aims to help developing countries prevent such deforestation and degradation. It creates a mechanism that would provide financial compensation to developing countries that make efforts to address these problems. Some funding has started to flow to build REDD+ readiness plans and forest monitoring capacity. However, many methodological issues stand in the way of reaching agreements and attracting enough funding for the initiative to succeed.

One of the core ideas of REDD+ is that payments should be based on results. But particularly in Congo Basin countries, where I recently spent three weeks meeting with stakeholders and policymakers on REDD+ plans and goals, determining results is not an easy task.

How do we measure performance? First, we must agree on a benchmark to which the future efforts can be compared. The simplest benchmark is perhaps just to compare current efforts to the past: using past data has the advantage of being based on facts and consequently less prone to inflation. But for this to work, one has to believe that the past is the best predictor of the future.

The Congo Basin countries have a problem: they have high forest cover and low historical deforestation rates… but fast-growing needs.

Yaounde, Cameron. Photo credit:  Aline Mosnier.

Yaounde, Cameron. Photo credit: Aline Mosnier.

The low historical deforestation rates in the Congo Basin countries result from several factors. Some argue that conflicts, unfavorable investment climate, lack of infrastructure, and low levels of economic development have led to a “passive protection” of the forests. But the context is changing. Presidents of the Congo Basin countries have big plans–they want to become emerging countries within the next two decades–and they are looking for new opportunities. Foreign investment projects in mining, oil, agro-industrial plantations, and large-scale agriculture are now flourishing in the Congo Basin, and protected areas are under threat. Local communities could be threatened by expropriation and pollution from large scale projects, but at the same time these communities are also eager to see new employment opportunities.

What does this situation tell us about REDD for the Congo Basin? First, payments for living forests are necessary to avoid deforestation because this is the only way to convince developing countries that forests are valuable. These payments have to benefit both local communities who are living next to the forest, and governments who are making the decisions about large-scale conversion of forests.

Second, if payments are conditional to reduction compared to past deforestation, we can’t expect much from REDD in the Congo Basin countries. If payments are delivered based on lower future deforestation rates and are not underestimated compared to what could be foreseen according to countries development needs, the international community has a chance to make a change.

But this needs trust. Trying to quantify future emissions from deforestation and forest degradation is challenging and undoubtedly involves large uncertainties. However, by engaging with stakeholders to understand the local context while having independent funding, by building the models under the necessary scrutiny and scientific rigor, and by clearly communicating the results to the international community, scientists could play an important role in finding a fair deal to fight against future deforestation.

At IIASA, we are contributing to this objective under our REDD-PAC project by combining land use and systems analysis tools from IIASA, regional expertise of the National Institute for Space Research (INPE) in Brazil and the Central African Forest Commission (COMIFAC) in the Congo Basin, and the experience of UNEP-WCMC on the multiple benefits of REDD+.

Aline Mosnier contributed to work that will be presented at a special session organized by UNEP-WCMC and IIASA at the Global Landscapes Forum (GLF) at the COP 19th in Warsaw, highlighting the role of land use change models in supporting landscape-scale planning. She recently returned from travels through the Congo Basin, where she met with stakeholders and policymakers.

Recharge.green: What’s a forest worth?

This post was originally published on the recharge.green blog. IIASA is a partner in the new project, which focuses on the potential for renewable energy in the Alps.

mountain biker in forest ©dreamstime.comWhen I think of an alpine forest, I think of the towering cedar trees that blanket the Cascade mountains near my native Seattle, with trunks so broad you can’t reach your arms around them. I think of the shadowy quiet that envelops me as I wander through a mountain forest in my new home in Austria. I think of the scent of pine needles and the bounce of my feet on a trail softened by forest litter. The value of a mature forest to people like me who love the outdoors—its recreational value—is impossible to put into numbers.

We can, however, calculate the effects of different styles of forest management on more quantifiable criteria. We can determine how much carbon dioxide is taken up from the atmosphere and stored by long-growing forests. And we can estimate how much bioenergy we can sustainably produce by managing forests for biomass harvesting.

This is exactly what IIASA scientists have done for their first efforts in the recharge.green project. IIASA’s role in the project is to use our modeling expertise to explore the various possibilities for renewable energy expansion in the Alps. We are also looking at the tradeoffs and benefits of the different possible scenarios and ecosystem services (ESS). As a first step, researchers Florian KraxnerSylvain Leduc , Sabine Fuss (now with MCC Berlin), Nicklas Forsell, and Georg Kindermann used the IIASA BeWhere and Global Forest (G4M) models look at the tradeoffs between bioenergy production or carbon storage in alpine forests.

These graphs show the first results for recharge.green from IIASA’s BeWhere and G4M models, optimizing the location of bioenergy plants to maximize either carbon sequestration (top) or bioenergy production (bottom). The gradiant of green colors shows the amount of carbon storage over the landscape, while the red boxes (and according gradient in red) show the harvesting intensity in different harvesting areas.

These graphs show the first results for recharge.green from IIASA’s BeWhere and G4M models, optimizing the location of bioenergy plants to maximize either carbon sequestration (top) or bioenergy production (bottom). The gradiant of green colors shows the amount of carbon storage over the landscape, while the red boxes (and according gradient in red) show the harvesting intensity in different harvesting areas.

“Managing forests optimally for bioenergy requires more intensive management,” says Kraxner. That means shorter rotations where trees are cut more often. Such a forest is made up of smaller trees that may look more like “close-to-nature plantations” than an old-growth forest. In contrast, managing forests for carbon storage means letting the trees grow older, also good for biodiversity and environmental preservation.

In their analysis, Kraxner and the team compared two management strategies: restricting bioenergy production to a small land area, and managing it intensively, or spreading bioenergy over a large land area but managing less intensively over the whole area. They found that the same amount of bioenergy could be produced by managing a small amount of land area intensively for bioenergy production. This more intensive management on a small area of land would free up a larger land area for preservation and protection or other special dedication to ecosystem services.

“Both methods are sustainable,” says Kraxner, “but the optics are different. Intensification can be a good solution to provide renewable energy and at the same time preserve biodiversity and the more intangible values of mature forests.”

What do you think? What should our priorities be in managing Alpine forests?

What does the IPCC report mean for climate policy?

By Anthony Patt, ETH Zurich and IIASA (From ETH-Klimablog)

SONY DSCThe first of three working group reports of the Intergovernmental Panel on Climate Change (IPCC) was made public last Friday. Previous reports served as guidepost for climate policy development. And yet some policies were clearly more effective than others.

Over the next several months, the IPCC will release a series of three volumes, one from each of its three working groups, together constituting its Fifth Assessment Report (AR5). The Working Group  (WG) 1 report, on the science of climate change, was just published, while reports from WGs 2 and 3, covering climate impacts and adaptation, and the challenge of reducing or stopping climate change, respectively, appear in March and April of 2014.

Established by the United Nations in 1988, the role of the IPCC is to assess the state of the science, communicating it in a manner that is useful to policy-makers. Three of the previous four assessment reports have come at critical times in climate policy development. The first two supported negotiations of the current global treaty and its first major revision. The Nobel Peace Prize winning Fourth Assessment Report (AR4) was released in 2007, intended to guide the negotiations to the successor to Kyoto.

The AR4 delivered a convincing two part message: that to avoid dangerous climate change the world must embark on a pathway completely eliminating greenhouse gas emissions from industry and land use change by the second half of this century, and that such a pathway is both technically and economically feasible. Many expected this message to lead to a successful negotiation process to be completed in Copenhagen in 2009.

International climate negotiations have made little progress.

International climate negotiations have made little progress, but the IPCC still has value, argues Patt.

But negotiators failed to reach an agreement in Copenhagen, and have made remarkably little progress in the four years since. Moreover, both the recently published AR5 WG1 report and early drafts of the WG2 report on climate impacts and adaptation suggest that their findings will strengthen those from AR4, but will not add anything dramatically new. Some say that the IPCC is no longer of any value. I disagree, for two reasons.

First, the most ambitious policy developments are now happening at the national level, with countries like Germany, Switzerland, and even the United States planning exactly the kind of transition away from fossil fuels and high emissions pathways that the AR4 suggested was both necessary and possible.1 There is reason to believe that the actions of this smaller number of countries will deliver the technological progress to make a global transition possible. Without the AR4, it is easy to imagine such countries having behaved differently, while the AR5 WGs 1 and 2 reports ought to provide added justification.

Second, deep differences of opinion have emerged concerning the best policies to achieve national decarbonization goals. Ten years ago, almost all analysts were convinced that carbon markets, i.e. trading in CO2 emissions certificates, represented the ideal policy instrument. But these have worked poorly, while portfolios of other instruments, including subsidies and regulations, have exceeded expectations. Researchers have studied these outcomes.e.g. 2 They have found, for example, that the more successful policy instruments are those that work to minimize the risks that investors in new technologies face.

The AR5 makes clear that an energy system transition remains necessary, and indeed now appears even more urgent than it did a few years ago. It is now possible for the IPCC, in its WG3 report, to provide a critical appraisal of alternative strategies. This is badly needed.

This post was originally published on the ETH Zurich Klimablog (in German).

1.         Lilliestam, J. et al. An alternative to a global climate deal may be unfolding before our eyes. Clim. Dev. 4, 1–4 (2012).
2.         Peters, M., Schneider, M., Griesshaber, T. & Hoffmann, V. H. The impact of technology-push and demand-pull policies on technical change – Does the locus of policies matter? Res. Policy 41, 1296–1308 (2012).

About the author
Anthony Patt is Professor at ETH Zurich, and a Guest Research Scholar in IIASA’s Program on Risk, Policy and Vulnerability, where he serves as head of the  Decisions and Governance Research Group. His research is on the effectiveness of policies at addressing risks and uncertainties in the area of climate change, considering both the restructuring of energy systems and adapting to climate impacts and vulnerabilities. Read more>>

Note: This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.

claimtoken-524e817f798d8