Climate systems science is personal and so are the risks

© Vadim Nefedoff | Shutterstock

 

By Sandra Ortellado, 2018 Science Communication Fellow

Around 8,000 kilometers away from Vienna, Austria, hundreds of Arctic coastal communities are at imminent risk from the melting ice and coastal erosion. Indigenous Arctic populations struggle with food insecurity every day, living off small fractions of what their catch would have been only a few years ago. Their culture and their way of life, so dependent on sea ice conditions, are melting away, along with the very root of the Arctic ecosystem.

However, construal level theory, a social psychological theory that describes the extent to which distant things become abstract concepts, tells us that 8,000 kilometers is just far enough for Arctic peoples to lose tangible existence in the minds of urban citizens. Unlike Arctic communities, who experience the direct effects of climate change at each meal, commercialized lower latitude societies don’t have to face the environmental consequences of choosing to drive to the grocery store instead of bike.

Nevertheless, those consequences are very real, even if the impacts on the Arctic and climate system don’t always catch our attention. Sea level will continue to rise for the next several hundred years—it takes 500 years for the deep ocean to adjust to changes at the surface.

On Friday, 22 July, former Chief Scientist of the UK Met Office Dame Julia Slingo and former Chair of the IIASA Council Peter Lemke joined us at IIASA for a joint lecture on climate risk in weather systems and polar regions. The lecture had one underlying theme: in order to make informed decisions on climate change, we need to embrace uncertainty with a broader understanding of what’s possible. That means that the far-away Arctic needs to be seen as nearby and relevant, and that climate change forecasts once seen as ‘uncertain,’ should instead be interpreted as ‘probable.’

“People are often confusing uncertainty with risk. If it’s uncertain they think they don’t really have to think about it. But there is a risk they take if they avoid things,” says Lemke. “a 40% chance could also mean a doubling of the risk, and a doubling of the risk is something that’s easily understood.”

“It’s a matter of how you communicate it,” says Lemke.

Perhaps Hollywood’s obsession with apocalyptic disaster narratives serves some kind of purpose after all—the stories seem outlandish, but films translate them into concepts we can understand and scenes we’re familiar with.  It’s hard to picture what it would be like to live in a world that is 2°C warmer, but thanks to Hollywood special effects, we can picture what it would be like if storms of epic proportions engulfed the Statue of Liberty in a gigantic tidal wave.

“We have get down to people’s personal experience. That’s why I’m so against the use of things like global mean temperature, because people can’t relate to that,” says Slingo. “I am very keen on using narrative, but based on science, so people have access to the evidence for why we have this story that we tell about how climate change could affect them personally.”

Of course, we can’t give Hollywood too much credit: these stories are dangerously lacking input from actual climate science. Nevertheless, armed with the forecasting tools and technologies that have advanced so much over the past decade or so, we can counter uncertainty and get a better understanding of the risks we face. For example, using improved computer models and satellites that determine the age and thickness of ice, we can determine the rates of receding ice, and how much that will affect sea level rise in coastal communities.

Likewise, social media makes it easy to transmit information rapidly to a large audience that might not have been reachable otherwise. Reaching people where they are is of paramount importance—while scientists can put painstaking effort into presenting the most accurate, unbiased account of probable risks, this is just one facet of any given decision. In the end, it is the public and the policymakers that represent them that must make the decision about what actions to take, based on a complete narrative that includes the socioeconomic and cultural factors involved.

“It’s all about dialogue at the end of the day. One of the things I learned as MET office chief scientist was that based on the evidence I was giving to government, you would think that the policy would be quite clear,” says Slingo. “But there are other aspects to take into consideration, such as unemployment or other policy implementation capacities and societal implications.”

That’s why Lemke and Slingo both make huge efforts to communicate with the public, especially with the impressionable, optimistic, social media savvy and politically mobilizing younger generations. From their interactions and outreach with the public, Lemke and Slingo know that once you put climate change in proximity and translate science into narratives that are relevant to the lives of individual citizens, the public does care about climate change. They want to know more, and they want to do something about it.

When it comes to environmental advocacy, education is power, especially when it translates the high-end risk probabilities of climate science into relatable narratives. For Lemke and Slingo, that creates a huge opportunity for scientists of all backgrounds.

“I don’t think climate change has to be depressing. It’s a fantastic opportunity for a whole generation of scientists and engineers to tackle a great problem,” says Slingo. “I actually have the confidence that we’ll solve it.”

Science and the media – An interview with Anne Glover

by Melina Filzinger, IIASA Science Communication Fellow

As a science communication fellow at IIASA, I had the opportunity to talk to Dame Anne Glover, who was recently made an IIASA distinguished visiting fellow. Originally a successful researcher in microbiology, she previously served as the first chief scientific adviser for Scotland, as well as the first chief scientific adviser to the president of the European Commission, and is now president of the Royal Society of Edinburgh.

© Anne Glover

In your roles as scientific adviser you had to know about a broad range of relevant scientific topics. How do you keep informed about topics that lie outside your own area of research?

Of course no-one can be an expert in all the different areas of science. As a microbiologist, I am very specialized, but I am also a generalist when it comes to other areas of research. I keep up to date by reading articles about lots of different topics, from climate change to chemical toxicity or Alzheimer’s research, just because I am curious and interested.

However, if a minister or policymaker asked me to brief them on a particular topic, I would consult organizations with expertise in that area and ask them questions until I felt that I understood the topic. Then I would translate that scientific, often jargon-filled research into something that makes sense to a non-specialist. Part of the role as scientific adviser is not so much being an expert as being a translator.

Do you follow any science publications aimed at a broad audience? What are your favorites?

There is an organization called Sense about Science that publishes reports on issues that are being discussed among the public. They also have a fabulous service called Ask for evidence. Anyone can go onto their website and type a question, for example “Do female contraceptive pills end up feminizing fish in water streams?”, and they have a panel of experts that can comment on that, give you the evidence, and explain why this issue might or might not be a problem. It’s fantastic! I often use these answers as a starting point to find out about something.

I follow several other popular news outlets as well, for example New Scientist or the science and nature section of the BBC news app. I don’t expect absolute accuracy from those, I just expect to get a first impression of a research area. I also use Twitter as a source of information, because people often tweet about interesting science articles.

You are very active on Twitter. Has social media been useful to you, and how can it be used effectively?

I came to Twitter kicking and screaming when I joined the European Commission as chief scientific adviser to the president. I just thought that I had way too much to do to spend time on social media. It was Jan Marco Müller, a former colleague and now head of the directorate office at IIASA, who convinced me that Twitter could actually be a good way to tell people what I was doing, especially since transparency about my work is very important to me.

Have I found it useful? Enormously so! When I was at the commission I used it to see what really got people excited, either in a good way or in a bad way. When people were against a new technology, it helped me to understand their reasons. Tweeting is also an opportunity for me to help other people by highlighting interesting and useful events or initiatives. It can even be a little bit addictive.

How can science communicators and journalists reach a wide audience without oversimplifying scientific content?

The biggest nervousness I see among scientists is that of oversimplification. That is because, if you do oversimplify, you’re not going to upset your lay audience, but you will upset your scientific audience. I struggled with this for quite some time myself. Generally speaking, I would always favor simplification, of course not to the point of saying something that’s not true. I would however encourage scientists to be less afraid of simplification when speaking to a non-scientific audience. You will never be able to please everyone, you can only do your best to make an abstract subject accessible and interesting to people.

Do you have any tips for young scientists to make their work visible to the public?

In many cities there are science centers, museums, and other places where people get together, and there is nothing, other than their own modesty, to stop a young scientist from offering to talk about their work there. If it seems too daunting to do that kind of thing on your own, you could maybe do it with some of your colleagues. There are lots of opportunities out there for young scientists. Nobody is going to give those opportunities to you, but nobody is going to stop you either! You just have to take them!

If you do take them, think about what audience you are trying to reach beforehand, for example, if you want to talk to children or young adults. Then just be creative in how you present your research–try to build a story. Two good things will come out of it: one is that even if only 50 people show up, and only five of them are interested in what you are saying, you will have transformed the lives of those five people and made them excited about something. That is an achievement. The second thing is, that if you are doing things like that, and the young scientist next to you isn’t, it makes you different, and you have added value. You will also gain experience in communicating, which in turn will make the impact of your science much greater in the future. Everybody wins really, and it can be good fun as well.

Note: This article gives the views of the authors, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.