The roads to 2050

By Owen Gaffney, Stockholm Resilience Center (excerpted from a post on Rethink.earth)

What will the world be like in 2050?

Of course, it is difficult to make predictions, especially about the future, as the Danish proverb goes.

Part of the difficulty is that we – individuals and the institutions that allow us to act collectively and in the long term – routinely assume the future looks very much like the past. Just as routinely, though, this assumption is flipped on its head. Think of the global financial crisis, the Arab Spring, Brexit, or the recent US election.

But what if we already know what we want the world to look like in 2050. How do we get there?

By Andrew Hitchcock - Flickr, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=1708457

Dusk on Chang Jiang (Yangtze) Credit: Andrew Hitchcock | Flickr, CC BY 2.0,

I was reminded of the Danish proverb as I arrived at the International Institute for Applied Systems Analysis (IIASA) outside Vienna earlier this month for a three-day meeting of The World in 2050 (TWI2050) initiative. This was the third such scientific meeting hosted here at the home of some of the leading economic, demographic and energy modellers.

TWI2050 is arguably the most ambitious research being undertaken in the world today. At its heart is an ambition to map out the pathways for a sustainable planet. As with the previous meetings, it attracted about 130 complex-systems thinkers and computer-modelling experts.

Unlike other international modelling initiatives, TWI2050 was not created to explore a range of possible utopian to dystopian scenarios focusing on energy prices or climate change. The baseline assumption is a single scenario: successful completion of the Sustainable Development Goals (SDGs), agreed by all nations in 2015, and arriving in 2050 with a global economy operating within planetary boundaries – the limits of natural systems that keep Earth in a relatively stable state, relating to climate, biodiversity, deforestation, and fertilizer use, among others.

#winwin
The 17 SDGs and their 169 targets are extremely ambitious. Buried in the detail are many trade-offs but also potential win-wins. Meeting the climate goal means reducing greenhouse-gas emissions to zero, and this could affect the energy, biodiversity, or consumption goals either positively or negatively. The goals and their inherent trade-offs are already catalyzing research and the results show how challenging this will be.

This month, scientists publishing in the journal Nature explored Australia’s land-use trade-offs to reach the goals. The team, who were not at the TWI2050 meeting, used a massive computer simulation called Land Use and Trade Offs (LUTO) to see how factors such as climate policies or crop prices could shape Australia’s landscape by 2050. Exploring 648 scenarios, researchers Brett Bryan and Lei Gao found just 1% of scenarios achieved five goals simultaneously. However, some goals seemed to go better together than others. Achieving targets related to food, water, and biofuel production was possible in 6.5% of scenarios, for example. The authors, whose work contributes to Future Earth’s Global Land Programme, conclude that national policymakers need more of this type of analysis to elucidate trade-offs and avoid conflicting policies. Moreover, they argued for more scientific coordination internationally for a global perspective on implementing the SDGs.

Other research groups have also begun exploring the world in 2050. Recently Karl Heinz Erb from the Institute of Social Ecology, Vienna, who attended the TWI2050 workshop, and colleagues explored 500 scenarios to assess options for feeding 9 billion people in 2050 without further deforestation .

Their work, which also supports the Global Land Programme, concluded that it was possible, but would likely mean low meat, vegetarian, or vegan diets globally. Meanwhile, Marco Springmann from the Oxford Martin Programme on the Future of Food, also attending, and colleagues showed that by 2050 a global vegetarian diet would reduce diet-related global mortality by 6-10% and food-related greenhouse gas emissions by 29-70% – contributing to several goals. This type of research is essential to understand potential win-wins but these examples do not provide the pathways to arrive at these scenarios.

So, are computer models powerful enough to capture essential elements of incremental and disruptive change across complex issues relating to poverty, equality, education, technology, policy, energy, food, water, and climate? Read more on the Rethink.earth website

This article is excerpted from an article on the Rethink.earth website. It gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.

*The Stockholm Resilience Centre is one of the founding partners of The World in 2050 alongside the Sustainable Development Solutions Network and IIASA. Contributing organisations include the European Commission, Future Earth, Netherlands Environmental Assessment Agency, Potsdam Institute for Climate Impact Research, Future Earth. Check out the website for details.

References

1. Nilsson M, Griggs D, Visbeck M (2016). Policy: Map the interactions between Sustainable Development Goals. Nature 534:7607 PDF for download
2. Nilsson M, Griggs D, Visbeck M, Ringler C (2016). A draft framework for understanding SDG interactions. ICSU – International Council for Science. PDF for download
3. Stafford Smith M, et. al. (2016). Integration: the key to implementing the Sustainable Development Goals. Sustainability Science DOI:10.1007/s11625-016-0383-3
4. Gao L, Bryan BA (2017). Finding pathways to national-scale land-sector sustainability. Nature 544:217–222 DOI:10.1038/nature21694
5. Bryan BA et al. (2016). Land-use and sustainability under intersecting global change and domestic policy scenarios: Trajectories for Australia to 2050. Global Environmental Change 38:130–152 DOI:10.1016/j.gloenvcha.2016.03.002
6. Erb K-H, Lauk C, Kastner T, Mayer A, Theurl MC, Haberl H (2016). Exploring the biophysical option space for feeding the world without deforestation. Nature Communications 7 DOI:10.1038/ncomms11382
7. Springmann M, Godfray HCJ, Rayner M, Scarborough P (2016). Analysis and valuation of the health and climate change cobenefits of dietary change. PNAS 113:15(4146–4151)DOI:10.1073/pnas.1523119113

Risk-based planning in developing countries—CATSIM training in Cambodia

By Junko Mochizuki, IIASA Risk, Policy, and Vulnerability Program

Catastrophic natural disasters such as Typhoon Haiyan of 2013 and Thailand’s flood of 2011 have highlighted the need for improved preparedness and proactive planning in developing countries. As population and economic activities continue to grow in hazard-prone areas, the economic costs of natural disasters are expected to rise globally, threatening the prospects for poverty alleviation and sustainable development.

Workshop participants.

Workshop participants learn to use IIASA’s CATSIM tool.

Cambodia is no exception. Frequent natural disasters continue to strain the country’s meager fiscal resources. Flood-related expenditure in particular has increased in recent years. In 2013, the Ministry of Public Works and Transport, in charge of major road construction, diverted approximately 20% of its non-maintenance budget for recovery and reconstruction. Ministry of Rural Development, in charge of rural sanitation, health and agricultural projects, faces similar constraints. Some of the costliest disasters have occurred in recent years: the 2013 flood cost $1 billion and the 2011 flood $624 million in damage and losses. The World Bank recently estimated that the annual average expected cost of natural disasters in Cambodia is approximately 0.7% of GDP.

On June 10-11, I participated in an IIASA workshop on this topic in Phnom Penh, Cambodia, along with IIASA researcher Keith Williges. Our goal was to train Cambodian policymakers on the concept of disaster risk and need for better fiscal preparedness, using IIASA’s CATSIM model. Like many low-income countries, Cambodia’s ability to access resources through taxation and external loans is limited. Using CATSIM, policymakers can evaluate alternative options for preparedness including hazard mitigation and reserve fund and assess how further accumulation of economic assets may raise risk in the longer term.

In 2011, Cambodia experienced heavy flooding after strong typhoons and heavy rain. Photo credit: Thearat Touch EU/ECHO

In 2011, Cambodia experienced heavy flooding after strong typhoons and heavy rain. Photo credit: Thearat Touch EU/ECHO

Risk-based planning is still uncommon globally and particularly so in developing countries like Cambodia. Year after year, scarce resources are wasted because national and local policymakers do not have access to good risk information such as risk maps and timely weather forecasts. This could change, however, as detailed risk maps are becoming available and a new standard operation procedure for early warning system is now being prepared under this project. The CATSIM workshop has also familiarized policymakers with the concept of economic and fiscal risk of natural disasters.

While policymakers understand the potential costs rising from natural disasters, the real challenge is to link such risk information strategically.  Without concrete advice on how risk maps can prioritize budget allocation, for example, it is unlikely that decision makers will change their old practice of non-risk based planning. In addition to quantifying and communicating economic, social, and environmental benefits of risk reduction and management, further barriers including financial, institutional and cognitive gaps must also be addressed. Bridging science with policy implementation requires strategic linking, and the CATSIM training marked an important first step for improved risk-based planning and co-production of knowledge in Cambodia.

More information:

Foresight academy converges minds, cultures, and comfort zones

By Jennifer Chan, participant in the IIASA co-led IFA Summer School

Jennifer ChanFrom 9 to 13 September in Laxenburg, Austria a group of researchers and practitioners gathered for the International Foresight Academy Summer School program organized by the  Austrian Institute of Technology and IIASA’s Advanced Systems Analysis program. It was 5 days of converging minds, cultures and comfort zones. We were a group of strong perspectives, to say the least, and so you can imagine how some of the conversations transpired. In a small town outside of Vienna, we had the luxury of being away from our day-to-day to learn about foresight and engagement in stakeholder consultation. The two instructors, Felicity Edwards and Ruben Nelson, from Canmore, Alberta, are both seasoned veterans and brought a wealth of information and experience to the week.

Foresight refers to looking forward to anticipate the future landscape and design scenarios to test and evaluate where solutions will demonstrate the greatest impact.

I was drawn to travel across the world to be connected to a spectrum of diverse perspectives and gain insight to how researchers and practitioners are approaching foresight and engagement. It was a pleasure to see how people from around the world approach the complex problems of the world and spend the time to improve their craft. As a Master of Design Student, Strategic Foresight and Innovation at the Ontario College of Art and Design, I was specifically excited to be working and learning from professional foresighters and consultants working at the intersection of foresight and engagement. While my work is more in engagement, I am always looking for more tools to diversify my approaches to research and to designing community consultation.

paper circle exercise

Ideas from an exercise during the IFA summer school.

Together, we discussed and worked through complex topics of language, terminology and diverse cultures from a spectrum of working styles and comfort levels with foresight and engagement. I strongly think that the most powerful take away from the IFA is that we are all working on the wicked problems of the world in different ways and if we can simple push each other a little bit than we have done more than we could have on our own.

balcony photo (2)

Participants in the 2013 IFA Summer School

I left the International Foresight Academy with a thirst to learn more about how foresight can impact my work – I am the Founder of Exhibit Change, a design driven community engagement organization with a focus on the intersection of wicked problems and citizen designers. We work with community and stakeholders to identify pain points and work together to co-design the spaces that support systemic change and shifts in behavior. Working in teams, with the guidance of Felicity and Ruben made it clear that engagement and foresight are closely aligned and that the spectrum of tools is expanding and influencing each discipline. I learned a lot from the content, the facilitation methods and time to reflect on my own practices.

Note: This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis. 

Biography:

Jennifer Chan is a design strategist and social entrepreneur. Her interests are city building, education, design thinking, participatory leadership, and social impact. Jennifer has a Bachelors of Architectural Science and is currently a candidate for the Masters of Design in Strategic Foresight and Innovation. Jennifer’s work and research has her looking at educational design, spatial pedagogy experiential design, game theory, civic engagement; generally creating spaces for individuals to co-design experiences for public good. Jennifer is the Founder of Exhibit Change, a design-driven community engagement organization exploring the intersections of wicked problems and citizen designers. Jennifer is constantly asking “How Might We…”