Interview: Outside the castle walls

Fabian Wagner is a researcher in IIASA’s Mitigation of Air Pollution and Greenhouse Gases (MAG) Program. He is currently on sabbatical as a visiting professor at Princeton University.

Fabian Wagner Credit: Princeton University

Fabian Wagner
Credit: Princeton University

What’s your role at Princeton?
I have a joint appointment with two institutions within the university, and one of my roles is to improve the communication between these: I am a visiting professor at the relatively young Andlinger Center for Energy and the Environment (ACEE), and a visiting lecturer at the Woodrow Wilson School of Public and International Affairs (WWS). The ACEE is part of the engineering school, so there I mostly interact with engineers, while the WWS mostly hosts economics, lawyers, and political scientists. At WWS I am part of the Science, Technology and Environmental Policy (STEP) Program.

What’s a typical day for you at Princeton?
Over the year I am teaching a fair amount, more than the average Princeton faculty. That is, I am not doing a sabbatical in the usual sense of the word. I am basically constantly preparing lectures for courses I am teaching on energy technologies, the energy and water nexus, and energy policy. I am also supervising undergraduate and graduate students on their theses. During the semester there are more seminars, brown bag lunches and breakfasts than one can realistically attend.

How does your work at the university differ from your work at IIASA?
Here the projects I am involved in do not have strict deadlines: The next deadline is always the next lecture. The exceptions are the days by which grades need to be submitted. As a professor I advise students, but they go away and do their research themselves. It is fascinating to see how smart they are and how quickly they absorb ideas and can apply them. Oh, and I have no supervisor who guides what I do.

What do you miss about IIASA?
I miss the team spirit of the MAG group, and the more international outlook on issues. What I do not miss is the long commute from Vienna to Laxenburg—here I live on campus and can walk to either one of my offices in three minutes.

Credit: Princeton University

Princeton University campus. Credit: Princeton University

What are you doing at a university that you would  not normally do at IIASA?
I attend a lot more seminars, and in general – because the work here is less funding-driven – there is a great deal of room for intellectual curiosity.  I also work with corporate partners of the university. While at Princeton, I’m working with a local energy utility on a project to model the future electricity system and electricity market in New Jersey and neighboring states to support the further development of their Energy Master Plan.

Here I have a lot of freedom in deciding what projects to engage in and how to spend my time. In my experience Princeton is very open to cross-cutting activities. IIASA is small, so the number of approaches, methods and modes of thinking are limited. On the other hand, much of the work at Princeton is not so holistic and integrated as IIASA’s work, and some activities here lack a critical mass and long-term engagement.

When you come back to IIASA, what would you want to bring with you from your experience at Princeton?
The courses that I teach here are more on the turf of IIASA’s energy and water programs, so I hope to be able to interact with them more in the future. Also, in addition to the specific things I am learning I also hope to bring back some inspiration to IIASA colleagues to think about the value of changing perspectives from time to time, and about the space of possible career moves.

Note: This article gives the views of the interviewee, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.

Six questions for Simon Levin

Princeton University Professor Simon Levin—IIASA council chair 2003-2008–has won numerous awards for his interdisciplinary research in environmental sciences, economics, and evolutionary biology. On 10 November, Levin gave a public lecture at IIASA, at which he was named an IIASA Distinguished Visiting Fellow

Simon Levin speaks at the fifth OeAW/IIASA Public Lecture in Laxenburg on 10 November. Credit: IIASA/Matthias Silveri

Simon Levin speaks at the fifth IIASA/OeAW Public Lecture in Laxenburg on 10 November. Credit: IIASA/Matthias Silveri

IIASA: Your research explores issues such as environmental degradation, human inequality, and climate change. Why are global problems such as these so difficult to address?
Simon Levin: To a large extent, many of these are problems not well addressed in market-based systems. The problem is that for public goods and common-pool resources, the incentives for individual actions are misaligned with the interests of society.   Equity gaps and discounting of the future add to these problems, and make it difficult to achieve consensus, especially at global levels for which the feedback loops associated with individual and local actions are weak.

What kinds of approaches are needed to understand such complex, global environmental and social problems?
Certainly we need systems approaches to deal with the linkages and scaling problems within these complex adaptive systems.  We need interdisciplinarity, and we need more study of how to achieve cooperation at national and international levels.  These are all problems central to the agenda of IIASA.

What new insights has your research brought to these problems?
I have long been impressed with the power of using what we learn in one set of systems to address analogous problems in others, and have benefited greatly from what I have learned from colleagues in other disciplines.   I feel that I have been able to get a great deal of mileage out of translating and adapting those lessons to environmental problems, and feel that my ecological and evolutionary perspective in particular, and what I have learned from how evolution has dealt with challenges, has allowed me to bring useful perspectives to the management of coupled biological and socioeconomic systems.

How can models of complex environmental systems inform our understanding of human systems such as the economy?
We learn from such systems what makes them robust, and what makes them vulnerable to collapse; the importance of diversity, redundancy, and modularity to the ability of systems to adapt in variable environments; the importance of flexible and adaptive governance.

Credit: PhotonQ via Flickr

“We learn from [environmental] systems what makes them robust, and what makes them vulnerable to collapse” Credit: PhotonQ via Flickr

What can studies of cooperation in nature tell us about cooperation in human societies?
Cooperation in nature is strongest in small groups; and as those groups become larger, agreements, social norms and institutions become increasingly important.  Nobel Prize winner  Elinor Ostrom led in adapting those principles to the management of small societies, and I agree with her on the importance of polycentricity—building  up from smaller agreements—in addressing global environmental problems.

How can we apply such findings to find practical solutions for the problems we face?
We need research, but we also need partners outside of science.  Increasingly, business leaders have looked to biological systems for models as to how they can deal with challenges; we now similarly need to partner with government leaders if we are to address the grand challenges in achieving a sustainable future.

Watch the full lecture

Interview: From systems analysis to remote sensing

Eric F. Wood is a hydrologist at Princeton University, well-known for his work in hydrology, climate, and meteorology. He worked as a research scholar in IIASA’s Water program from 1974 to 1976. On 30 April, 2014, he received the European Geophysical Union’s Alfred Wegener Medal in Vienna, Austria.

credit - princeton

Eric F. Wood (Credit: Princeton University)

IIASA: How did you get interested in hydrology? What drew you to the field?
EW: I came to IIASA after I finished my doctorate at MIT. I worked in the areas of system analysis and statistics related to water resources. During my first sabbatical leave at the Institute of Hydrology in the UK (now the Center for Hydrology and Ecology), I started to collaborate with Keith Beven on hydrological modeling, which started my transition towards the physical side of the water cycle from the policy and systems analysis side.

A few years later, Robert Gurney, then at NASA and now at the University of Reading (UK), asked if I would be on the Science Advisory Committee for NASA’s Earth Observing System (EOS), which was just starting to be planned. This started my research activities in terrestrial remote sensing.   Over the next 25 years these elements have played heavily in my research activities.

What have been the biggest changes in hydrology and earth science over your career – either in terms of new understandings, or in how the science is done?
I can name three huge changes, all inter-connected: One is the increase in computational resources. High performance computing—petabyte computing using 500,000+ cores—is now available that allows us to simulate the terrestrial water and energy budgets using physics resolving land surface models at 100m to 1km resolutions over continental scales, and soon at global scales. The second big change is the availability of remotely sensed observations. There are satellite missions that have lasted far beyond their planned lifetimes, such as the NASA EOS Terra mission, where we now have over 15 years of consistent observations. These observations have been reprocessed as algorithms have improved so we can now use the information to understand environmental change at regional to global scales. The third major shift has been computer storage. Large amounts are available at low prices. We have about 500 Terabytes of RAID storage, and can acquire 150TB for about $10,000 or less. This allows us to store model simulations, remote sensing data, and do analyses that were once impossible. Together, these three changes have transformed my field, and the field of climate change related to terrestrial hydrology. Going forward, we have the data, the projections and analytical tools to look at water security in the 21st Century under environmental change.

What insights has remote sensing brought to hydrology?
Remote sensing offers a global consistency that is unavailable with in-situ observations, and offers observations over regions without ground data. This permits us to analyze hydrologic events such as droughts within a global context, and relate these hydrologic events to other drivers like ENSO (tropical Pacific sea surface temperature anomalies) that affect weather and seasonal climate patterns.

Credit: Carolina Reyes (distributed via imaggeo.egu.eu)

Wood’s work has focused in part on drought and climate change. Badwater, California, a huge salt flat drainage system for the Death Valley desert. Credit: Carolina Reyes (distributed via imaggeo.egu.eu)

What do you see as the key questions currently facing water resources?
The biggest question I see over the next decades is how water security will be affected by environmental change. By environmental change I mean climate change, global urbanization, increasing demand for food, land use and land cover change, pollution, etc. Water security is coupled to food and energy security, and water security is and it is intrinsically linked to the climate system and how that may be changing.

How did IIASA influence your research interests or career?
I made many friendships during my stay at IIASA and I was exposed to world-class research and researchers. This helped me in thinking about important research questions and the types of problems and research that will have impact.

What do you think is the role for IIASA in the worldwide research community?
There are many answers to this question. IIASA plays an important role in providing critical scientific information and analyses related to global issues that go beyond countries – transboundary analyses, and therefore that can provide the scientific basis for global policies. There is an urgent need for more global policies on environmental change and adaptation, food and water security, and environmental refugees, to name just a couple examples in my area.

IIASA has also developed scientific methods and data that can be applied by various groups. For example, IIASA’s world renowned integrated assessment models have been used in climate change modeling for the IPCC and Coupled Model intercomparison Project (CMIP).

Note: This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.