5 years of Vietnam membership at IIASA

Tran Thi Vo-Quyen, IIASA guest research scholar from the Vietnam Academy of Science and Technology (VAST), talks to Professor Dr. Ninh Khac Ban, Director General of the International Cooperation Department at VAST and IIASA council member for Vietnam, about achievements and challenges that Vietnam has faced in the last 5 years, and how IIASA research will help Vietnam and VAST in the future.

Professor Dr. Ninh Khac Ban, Director General of the International Cooperation Department at VAST and IIASA council member for Vietnam

What have been the highlights of Vietnam-IIASA membership until now?

In 2017, IIASA and VAST researchers started working on a joint project to support air pollution management in the Hanoi region which ultimately led to the successful development of the IIASA Greenhouse Gas – Air  Pollution Interactions and Synergies (GAINS) model for the Hanoi region. The success of the project will contribute to a system for forecasting the changing trend of air pollution and will help local policy makers develop cost effective policy and management plans for improving air quality, in particular, in Hanoi and more widely in Vietnam.

IIASA capacity building programs have also been successful for Vietnam, with a participant of the 2017 Young Scientists Summer Program (YSSP) becoming a key coordinator of the GAINS project. VAST has also benefited from two members of its International Cooperation Department visiting the IIASA External Relations Department for a period of 3 months in 2018 and 2019, to learn about how IIASA deals with its National Member Organizations (NMOs) and to assist IIASA in developing its activities with Vietnam.

What do you think will be the key scientific challenges to face Vietnam in the next few years? And how do you envision IIASA helping Vietnam to tackle these? 

In the global context Vietnam is facing many challenges relating to climate change, energy issues and environmental pollution, which will continue in the coming years. IIASA can help key members of Vietnam’s scientific community to build specific scenarios, access in-depth knowledge and obtain global data that will help them advise Vietnamese government officials on how best they can overcome the negative impact of these issues.

As Director General of the International Cooperation Department, can you explain your role in VAST and as representative to IIASA in a little more detail?

In leading the International Cooperation Department at VAST, I coordinate all collaborative science and technology activities between VAST and more than 50 international partner institutions that collaborate with VAST.

As the IIASA council representative for Vietnam, I participate in the biannual meeting for the IIASA council, I was also a member of the recent task force developed to implement the recommendations of a recent independent review of the institute. I was involved in consulting on the future strategies, organizational structure, NMO value proposition and need to improve the management system of IIASA.

In Vietnam, I advised on the establishment of a Vietnam network for joining IIASA and I implement IIASA-Vietnam activities, coordinating with other IIASA NMOs to ensure Vietnam is well represented in their countries.

You mentioned the development of the Vietnam-IIASA GAINS Model. Can you explain why this was so important to Vietnam and how it is helping to improve air quality and shape Vietnamese policy around air pollution? 

Air pollution levels in Vietnam in the last years has had an adverse effect on public health and has caused significant environmental degradation, including greenhouse gas (GHG) emissions, undermining the potential for sustainable socioeconomic development of the country and impacting the poor. It was important for Vietnam to use IIASA researchers’ expertise and models to help them improve the current situation, and to help Vietnam in developing the scientific infrastructure for a long-lasting science-policy interface for air quality management.

The project is helping Vietnamese researchers in a number of ways, including helping us to develop a multi-disciplinary research community in Vietnam on integrated air quality management, and in providing local decision makers with the capacity to develop cost-effective management plans for the Hanoi metropolitan area and surrounding regions and, in the longer-term, the whole of Vietnam.

About VAST and Ninh Khac Ban

VAST was established in 1975 by the Vietnamese government to carry out basic research in natural sciences and to provide objective grounds for science and technology management, for shaping policies, strategies and plans for socio-economic development in Vietnam. Ninh Khac Ban obtained his PhD in Biology from VAST’s Institute of Ecology and Biological Resources in 2001. He has managed several large research projects as a principal advisor, including several multinational joint research projects. His successful academic career has led to the publication of more than 34 international articles with a high ranking, and more than 60 national articles, and 2 registered patents. He has supervised 5 master’s and 9 PhD level students successfully to graduation and has contributed to pedagogical texts for postgraduate training in his field of expertise. 

Notes:
More information on IIASA and Vietnam collaborations. This article gives the views of the authors, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.

Running global models in a castle in Europe

By Matt Cooper, PhD student at the Department of Geographical Sciences, University of Maryland, and 2018 winner of the IIASA Peccei Award

I never pictured myself working in Europe.  I have always been an eager traveler, and I spent many years living, working and doing fieldwork in Africa and Asia before starting my PhD.  I was interested in topics like international development, environmental conservation, public health, and smallholder agriculture. These interests led me to my MA research in Mali, working for an NGO in Nairobi, and to helping found a National Park in the Philippines.  But Europe seemed like a remote possibility.  That was at least until fall 2017, when I was looking for opportunities to get abroad and gain some research experience for the following summer.  I was worried that I wouldn’t find many opportunities, because my PhD research was different from what I had previously done.  Rather than interviewing farmers or measuring trees in the field myself, I was running global models using data from satellites and other projects.  Since most funding for PhD students is for fieldwork, I wasn’t sure what kind of opportunities I would find.  However, luckily, I heard about an interesting opportunity called the Young Scientists Summer Program (YSSP) at IIASA, and I decided to apply.

Participating in the YSSP turned out to be a great experience, both personally and professionally.  Vienna is a wonderful city to live in, and I quickly made friends with my fellow YSSPers.  Every weekend was filled with trips to the Alps or to nearby countries, and IIASA offers all sorts of activities during the week, from cultural festivals to triathlons.  I also received very helpful advice and research instruction from my supervisors at IIASA, who brought a wealth of experience to my research topic.  It felt very much as if I had found my kind of people among the international PhD students and academics at IIASA.  Freed from the distractions of teaching, I was also able to focus 100% on my research and I conducted the largest-ever analysis of drought and child malnutrition.

© Matt Cooper

Now, I am very grateful to have another summer at IIASA coming up, thanks to the Peccei Award. I will again focus on the impact climate shocks like drought have on child health.  however, I will build on last year’s research by looking at future scenarios of climate change and economic development.  Will greater prosperity offset the impacts of severe droughts and flooding on children in developing countries?  Or does climate change pose a hazard that will offset the global health gains of the past few decades?  These are the questions that I hope to answer during the coming summer, where my research will benefit from many of the future scenarios already developed at IIASA.

I can’t think of a better research institute to conduct this kind of systemic, global research than IIASA, and I can’t picture a more enjoyable place to live for a summer than Vienna.

Note: This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.

This is not reality

By Sibel Eker, IIASA postdoctoral research scholar

© Jaka Vukotič | Dreamstime.com

Ceci n’est pas une pipe – This is not a pipe © Jaka Vukotič | Dreamstime.com

Quantitative models are an important part of environmental and economic research and policymaking. For instance, IIASA models such as GLOBIOM and GAINS have long assisted the European Commission in impact assessment and policy analysis2; and the energy policies in the US have long been guided by a national energy systems model (NEMS)3.

Despite such successful modelling applications, model criticisms often make the headlines. Either in scientific literature or in popular media, some critiques highlight that models are used as if they are precise predictors and that they don’t deal with uncertainties adequately4,5,6, whereas others accuse models of not accurately replicating reality7. Still more criticize models for extrapolating historical data as if it is a good estimate of the future8, and for their limited scopes that omit relevant and important processes9,10.

Validation is the modeling step employed to deal with such criticism and to ensure that a model is credible. However, validation means different things in different modelling fields, to different practitioners and to different decision makers. Some consider validity as an accurate representation of reality, based either on the processes included in the model scope or on the match between the model output and empirical data. According to others, an accurate representation is impossible; therefore, a model’s validity depends on how useful it is to understand the complexity and to test different assumptions.

Given this variety of views, we conducted a text-mining analysis on a large body of academic literature to understand the prevalent views and approaches in the model validation practice. We then complemented this analysis with an online survey among modeling practitioners. The purpose of the survey was to investigate the practitioners’ perspectives, and how it depends on background factors.

According to our results, published recently in Eker et al. (2018)1, data and prediction are the most prevalent themes in the model validation literature in all main areas of sustainability science such as energy, hydrology and ecosystems. As Figure 1 below shows, the largest fraction of practitioners (41%) think that a match between the past data and model output is a strong indicator of a model’s predictive power (Question 3). Around one third of the respondents disagree that a model is valid if it replicates the past since multiple models can achieve this, while another one third agree (Question 4). A large majority (69%) disagrees with Question 5, that models cannot provide accurate projects, implying that they support using models for prediction purposes. Overall, there is no strong consensus among the practitioners about the role of historical data in model validation. Still, objections to relying on data-oriented validation have not been widely reflected in practice.

Figure 1

Figure 1: Survey responses to the key issues in model validation. Source: Eker et al. (2018)

According to most practitioners who participated in the survey, decision-makers find a model credible if it replicates the historical data (Question 6), and if the assumptions and uncertainties are communicated clearly (Question 8). Therefore, practitioners think that decision makers demand that models match historical data. They also acknowledge the calls for a clear communication of uncertainties and assumptions, which is increasingly considered as best-practice in modeling.

One intriguing finding is that the acknowledgement of uncertainties and assumptions depends on experience level. The practitioners with a very low experience level (0-2 years) or with very long experience (more than 10 years) tend to agree more with the importance of clarifying uncertainties and assumptions. Could it be because a longer engagement in modeling and a longer interaction with decision makers help to acknowledge the necessity of communicating uncertainties and assumptions? Would inexperienced modelers favor uncertainty communication due to their fresh training on the best-practice and their understanding of the methods to deal with uncertainty? Would the employment conditions of modelers play a role in this finding?

As a modeler by myself, I am surprised by the variety of views on validation and their differences from my prior view. With such findings and questions raised, I think this paper can provide model developers and users with reflections on and insights into their practice. It can also facilitate communication in the interface between modelling and decision-making, so that the two parties can elaborate on what makes their models valid and how it can contribute to decision-making.

Model validation is a heated topic that would inevitably stay discordant. Still, one consensus to reach is that a model is a representation of reality, not the reality itself, just like the disclaimer of René Magritte that his perfectly curved and brightly polished pipe is not a pipe.

References

  1. Eker S, Rovenskaya E, Obersteiner M, Langan S. Practice and perspectives in the validation of resource management models. Nature Communications 2018, 9(1): 5359. DOI: 10.1038/s41467-018-07811-9 [pure.iiasa.ac.at/id/eprint/15646/]
  2. EC. Modelling tools for EU analysis. 2019  [cited  16-01-2019]Available from: https://ec.europa.eu/clima/policies/strategies/analysis/models_en
  3. EIA. ANNUAL ENERGY OUTLOOK 2018: US Energy Information Administration; 2018. https://www.eia.gov/outlooks/aeo/info_nems_archive.php
  4. The Economist. In Plato’s cave. The Economist 2009  [cited]Available from: http://www.economist.com/node/12957753#print
  5. The Economist. Number-crunchers crunched: The uses and abuses of mathematical models. The Economist. 2010. http://www.economist.com/node/15474075
  6. Stirling A. Keep it complex. Nature 2010, 468(7327): 1029-1031. https://doi.org/10.1038/4681029a
  7. Nuccitelli D. Climate scientists just debunked deniers’ favorite argument. The Guardian. 2017. https://www.theguardian.com/environment/climate-consensus-97-per-cent/2017/jun/28/climate-scientists-just-debunked-deniers-favorite-argument
  8. Anscombe N. Models guiding climate policy are ‘dangerously optimistic’. The Guardian 2011  [cited]Available from: https://www.theguardian.com/environment/2011/feb/24/models-climate-policy-optimistic
  9. Jogalekar A. Climate change models fail to accurately simulate droughts. Scientific American 2013  [cited]Available from: https://blogs.scientificamerican.com/the-curious-wavefunction/climate-change-models-fail-to-accurately-simulate-droughts/
  10. Kruger T, Geden O, Rayner S. Abandon hype in climate models. The Guardian. 2016. https://www.theguardian.com/science/political-science/2016/apr/26/abandon-hype-in-climate-models

The legacy of systems analysis in South Africa: when young scientists become global leaders

By Sandra Ortellado, IIASA Science Communication Fellow 2018

In 2007, Sepo Hachigonta was a first-year PhD student studying crop and climate modeling and member of the YSSP cohort. Today, he is the director in the strategic partnership directorate at the National Research Foundation (NRF) in South Africa and one of the editors of the recently launched book Systems Analysis for Complex Global Challenges, which summarizes systems analysis research and its policy implications for issues in South Africa.

From left: Gansen Pillay, Deputy Chief Executive Officer: Research and Innovation Support and Advancement, NRF, Sepo Hachigonta, Editor, Priscilla Mensah, Editor, David Katerere, Editor, Andreas Roodt Editor

But the YSSP program is what first planted the seed for systems analysis thinking, he says, with lots of potential for growth.

Through his YSSP experience, Hachigonta saw that his research could impact the policy system within his home country of South Africa and the nearby region, and he forged lasting bonds with his peers. Together, they were able to think broadly about both academic and cultural issues, giving them the tools to challenge uncertainty and lead systems analysis research across the globe.

 Afterwards, Hachigonta spent four years as part of a team leading the NRF, the South African IIASA national member organization (NMO), as well as the Southern African Young Scientists Summer Program (SA-YSSP), which later matured into the South African Systems Analysis Centre. The impressive accomplishments that resulted from these programs deserved to be recognized and highlighted, says Hachigonta, so he and his colleagues collected several years’ worth of research and learning into the book, a collaboration between both IIASA and South African experts.

“After we looked back at the investment we put in the YSSP, we had lots of programs that were happening in South Africa, and lots of publications and collaboration that we wanted to reignite,” said Hachigonta. “We want to look at the issues that we tackled with system analysis as well as the impact of our collaborations with IIASA.”

Now, many years into the relationship between IIASA and South Africa, that partnership has grown.

Between 2012 and 2015, the number of joint programs and collaborations between IIASA and South Africa increased substantially, and the SA-YSSP taught systems analysis skills to over 80 doctoral students from 30 countries, including 35 young scholars from South Africa.

In fact, several of the co-authors are former SA-YSSP alumni and supervisors turned experts in their fields.

“We wanted to use the book as a barometer to show that thanks to NMO public entity funding, students have matured and developed into experts and are able to use what they learned towards the betterment of the people,” says Hachigonta. The book is localized towards issues in South Africa, so it will bring home ideas about how to apply systems analysis thinking to problems like HIV and economic inequality, he adds.

“It’s not just a modeling component in the book, it still speaks to issues that are faced by society.”

Complex social dilemmas like these require clear and thoughtful communication for broader audiences, so the abstracts of the book are organized in sections to discuss how each chapter aligns systems analysis with policymaking and social improvement. That way, the reader can look at the abstract to make sense of the chapter without going into the modeling details.

“Systems analysis is like a black box, we do it every day but don’t learn what exactly it is. But in different countries and different sectors, people are always using systems analysis methodologies,” said Hachigonta, “so we’re hoping this book will enlighten the research community as well as other stakeholders on what systems analysis is and how it can be used to understand some of the challenges that we have.”

“Enlightenment” is a poetic way to frame their goal: recalling the age of human reason that popularized science and paved the way for political revolutions, Hachigonta knows the value of passing down years of intellectual heritage from one cohort of researchers to the next.

“You are watching this seed that was planted grow over time, which keeps you motivated,” says Hachigonta.

“Looking back, I am where I am now because of my involvement with IIASA 11 years ago, which has been shaping my life and the leadership role I’ve been playing within South Africa ever since.”

International research organizations as a source of societal development and peace

By Melina Filzinger, IIASA Science Communication Fellow

In his lecture at IIASA, Maurizio Bona, senior advisor for relations with parliaments and science for policy, and senior advisor on knowledge transfer at the European Organization for Nuclear Research (CERN)  discussed the question “Science and diplomacy–two different worlds?”, focusing on the dual role of CERN as both a research laboratory and an intergovernmental institution.

Maurizio Bona ©CERN

According to Bona, international research centers like CERN and IIASA foster international and intercultural communication by bringing together people with different backgrounds and ideas to work on a common goal. In this context, these organizations act as communication channels where science is used as a universal language.

CERN was established in 1953 to carry out research on particle physics, but also to reunite a Europe that was divided after World War II, and to re-open the dialogue between European countries and beyond. While CERN was not involved in politics directly, an important point of the lecture was that science can provide a neutral field for dialogue and connect people that would not meet otherwise. In this way, international research institutes can contribute to science diplomacy in a very indirect and informal way.

IIASA was founded in 1972 to find solutions to global problems, and with a similar goal of using scientific cooperation to build bridges across the Cold War divide. Despite the vastly different research done at CERN and IIASA, both organizations have roots in science diplomacy that stem from the fact that today’s problems, regardless of whether they are fundamental or applied in nature, are often too complex to be solved by one country or discipline alone.

Even though CERN is a European organization, it attracts researchers from all over the world, like IIASA. In January 2018, 41% of scientific users (researchers using CERN facilities that are not paid by CERN) were from non-member countries and contributed their expertise as well as research equipment. In order to ensure that scientific advancement and not national interests are the basis of the research objectives at CERN, it is based on a simple but strong Convention that excludes military applications and ensures transparency. Additionally, CERN stays away from political affiliations.

Based on the success of the CERN model, the first particle accelerator in the Middle East, Synchrotron-Light for Experimental Science and Applications in the Middle East (SESAME), was established in 2004. Its organizational structure is based largely on that of CERN, and it was thought out explicitly as a way to bring together conflicting Middle Eastern countries, while at the same time advancing science. SESAME’s member states are Cyprus, Egypt, Iran, Israel, Jordan, Pakistan, Palestine, and Turkey and the facility has been open to scientific users from the Middle East and beyond since 2017.

Beyond fostering international and intercultural communication by bringing together people with different backgrounds and ideas to work on a common goal, international research institutes can also influence policy more directly. For example, CERN has been an observing member at the UN general assembly since 2012 and has had an influence on shaping the UN 2030 Agenda for Sustainable Development, advocating for the importance of education and fundamental research.

IIASA goes one step further, explicitly aiming to shape policies and help politicians make informed, evidence-based decisions. IIASA research has for example shaped European air pollution policy and has led to real improvements in the sustainable management of scarce resources in a number of countries. The institute’s independence and political neutrality are key for its credibility as an adviser to policy makers. IIASA is nongovernmental and is instead sponsored by its 23 national member organizations. Today IIASA member countries make up 71% of the global economy and 63% of the global population, making IIASA particularly well-suited to address global challenges.

Maurizio Bona closed his lecture with the following quote by Daniel Barenboim, a world-famous pianist and conductor:

Let me tell you something: This is not going to bring peace. What it can bring is understanding, the patience, the courage, and the curiosity to listen to the narrative of the other.            

Daniel Barenboim, Ramallah concert, August 2005.

This quote was originally meant to be understood in the context of international collaboration in music, but is also applicable to science, and in fact to any endeavor that brings together people from different backgrounds to work towards a common goal.

The lecture left the audience with some open questions, like how to measure the impact of science on society, or how involved science should be in diplomacy. Some of these questions were picked up on in a lively discussion after the talk. For now, I think it is fair to conclude that the histories of both CERN and IIASA show that international research institutes can have a positive impact on society while remaining politically neutral and unbiased in their scientific goals.

Note: This article gives the views of the authors, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.