Paris Agreement politics at play: the case for carbon dioxide removal

By Neema Tavakolian, 2021 IIASA Science Communication Fellow 

Ever wonder why countries can never agree on issues related to climate change and the environment? Young Scientists Summer Program (YSSP) participant Felix Schenuit dives into the politics and challenges surrounding carbon dioxide removal in international climate negotiations.

The Paris Agreement has been lauded as a landmark effort to address climate change and has been signed by nearly every country in the world. The agreement sets out ambitious goals such as reaching temperature targets, setting net-zero carbon targets, and providing financial, technical, and capacity building support to those countries that need it.

One topic that has been receiving increasing attention since the adoption of the agreement is carbon dioxide removal, or CDR – which comprises man made processes involving the direct removal of carbon dioxide from the atmosphere and sequestering it somewhere else, usually underground or under the sea floor. Since it was first proposed, CDR has been discussed on many platforms including critical comments, journals, and studies. 2021 IIASA YSSP participant Felix Schenuit studies how the debate, which has been largely ignored by policymakers until the Paris Agreement, is evolving, and how CDR is being taken up in climate policymaking.

© Felix Schenuit

Felix Schenuit comes from a background of political science and public policy. It was during his employment at the German Institute for International and Security Affairs (SWP) that he became fascinated by CDR and the political debates surrounding the impacts it can have on the fight against climate change. This is when he decided to combine his newfound interest with his background and experiences in international relations and public policy to pursue a PhD at the University of Hamburg comparing CDR policymaking in different countries and the role scientific knowledge has on its implementation.

Building on a previous study comparing CDR governance among nine Organisation for Economic Co-operation and Development (OECD) cases, Schenuit is now focusing on the role of scientific knowledge surrounding CDR in Brazil, China, India, and Russia. These countries account for a significant portion of the world’s greenhouse gas emissions due to their rapid industrialization and expanding economies. China and India are especially significant due to their great influence in ongoing international climate negotiations regarding the Paris Agreement.

Schenuit uses integrated assessment models to gather information and data about the role of CDR in different countries in decarbonization pathways.

“These models help us to understand what amount of CDR we are likely to need to achieve Paris Agreement targets. Case studies on specific countries are an important second step to explore facts on the ground about different policy initiatives, emerging CDR facilities, and efforts in each region. We reach out to country experts and build interdisciplinary bridges to investigate how CDR is addressed politically, what amounts are available and politically feasible, as well as relevant knowledge gaps,” he explains.

One of the biggest challenges remaining for CDR is limited knowledge about different CDR methods, both in science and policy circles. There are many ways one can remove carbon dioxide from the atmosphere, ranging from afforestation, to soil carbon sequestration, ocean fertilization, direct CO2 capture from the air, and the use of biochar, among others.

Reforestation on hill at Bao Loc mountain pass, Vietnam © Hoxuanhuong | Dreamstime.com

“When it comes to methods, many policymakers are unaware of the portfolio of available methods. Each method has different tradeoffs, both environmentally and politically. For example, in Germany, carbon capture and storage (CCS) is very contested and most policymakers are hesitant to even address CDR. Thus, in Germany one may need a different set of methods than in the UK, for example, where CCS-based CDR methods are pursued proactively,” Schenuit says.

Many predict that the role of international politics in CDR governance under the Paris Agreement is going to be difficult and tricky to navigate. Schenuit argues that it is still a bit too early in the debate for predictions as policymakers have only recently been directly addressing CDR. He does however agree that there is already strong evidence of politics at play and alliances are forming.

The study on Brazil, China, India, and Russia will yield fascinating results, as it will give us an idea about future disputes and questions regarding the carbon in our atmosphere. Questions like where we will be removing carbon and who is going to pay for it. One thing is for certain, however. Time is running out to meet the targets of the Paris Agreement, and international cooperation is desperately needed.

Note: This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.

Not a heron: the Eurasian Economic Union should ‘stand on two legs’

By Evgeny Vinokurov, Director of the Centre for Integration Studies at the Eurasian Development Bank, member of the IIASA-led project, Challenges and Opportunities of Economic Integration within a Wider European and Eurasian Space

An Italian nursery riddle goes: “Why does the heron stand on one leg? Because if it takes away the second leg, it will fall down!” An ornithologist will tell you that herons have incredibly strong legs. The EAEU, consisting of Armenia, Belarus, Kazakhstan, Kyrgyzstan, and Russia is not a heron – it does need to stand firmly on two legs. In this case, one leg is the European Union, and the other leg is the People’s Republic of China. An economist will tell you that the strength of “economic legs” underpinning the countries which make up the Eurasian Economic Union (EAEU) can be described, at best, as fair to middling: the heavy reliance on oil and gas is not particularly wholesome. That is why Russia and its EAEU partners need to establish close economic ties with both the EU and China.

© Galushko Sergey | Shutterstock

Both partners are critically important for the EAEU. The EU remains its largest trade partner: in 2016 it accounted for 50% of total exports from, and 41% of total imports to the Eurasian Union. EAEU member states are interested in expanding the inflow of European investment capital, transfer of EU technologies, and stable EU demand for energy. The EAEU, in turn, is the third largest EU trade partner (after the US and China); accordingly, the EU may be interested in liberalization of trade with the EAEU (establishment of a free trade agreement), reduction of non-tariff barriers in EAEU member states (with a view to increase EU exports), and stability of EAEU power supplies.

At the same time, the EAEU’s “turn to the East” is slowly gaining momentum: Asia-Pacific Economic Cooperation (APEC) countries,first and foremost, China and Association of Southeast Asian Nations  (ASEAN) countries, are beginning to overtake the EU. By the end of 2016, the Eurasian Union had imported 1.5% more goods from APEC countries (42.3% of total imports, mostly from China, Korea, and ASEAN countries) than it did from EU countries. It is also important for EU investors to understand that they are exposed to an ever-increasing risk of losing EAEU markets due to the inflow of capital from the leading Asian economies.

These matters have been subjected to rigorous applied analysis in Challenges and Opportunities of Economic Integration within a Wider European and Eurasian Space, a project initiated by IIASA in 2014. It advanced an independent dialogue platform to facilitate interaction between representatives of supranational bodies, expert and business communities of the two unions. The project is designed to help its European and Eurasian participants find common ground with respect to a possible inter-union trade and economic agreement.

According to project publications , it is advisable to reach a comprehensive agreement covering a much broader range of partnership domains than that associated with a standard free trade area. According to the latest calculations by European and Russian experts, an EU-EAEU free trade agreement would produce a positive impact. However, experts from the Information and Forschung (IFO) institute in Munich point out that EAEU agriculture and automotive industry may suffer heavy losses. This demonstrates that it is necessary to work out a quite structurally complex solution offering asymmetric advantages to the two sides.

Relations with China display completely different patterns. Two following “tracks” are especially important.

The first relates to the ongoing negotiations on a non-preferential agreement on trade and economic cooperation between the EAEU and China, envisaging reciprocal minimization of barriers in customs regulations and the financial sector, and intensification of investment cooperation. Talks have already been underway for one year, and are expected to continue for another year or two.

The second track deals with realization of the One Belt One Road  initiative. It involves implementation of large-scale joint infrastructure projects, primarily in transportation.  EAEU’s participation in the One Belt One Road initiative is very promising for its member states, especially for Russia and Kazakhstan, which need to remove infrastructural limitations inhibiting railroad carriage of containerized cargoes.  The EAEU continues to face the issue of insufficient investment capital allocation to container logistical hubs. Kazakhstan will also need to eliminate bottlenecks in its transportation and logistics infrastructure, primarily by building modern container terminals. These are but several of the numerous problems facing the EAEU.

We are looking at One Belt One Road in the broad Greater Eurasia context. Higher efficiency of Greater Eurasian land transportation corridors could enhance trade and generate numerous industrial opportunities. This is particularly relevant for landlocked countries and regions (all Central Asian countries, Russian Urals and Western Siberia).

Russia and its EAEU partners need to establish close economic cooperation ties with both the European Union and China. The EAEU will have to learn to balance between those two poles, making ample use of economic vistas presented by the tripartite cooperation setup, and “capitalize on contradictions.” If the EAEU manages to reach this overarching goal, its foreign economic policy would be successful.

This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.

Clean air beyond the 2008 Olympics in China?

By Caroline Njoki, IIASA Science Communication Fellow 2017

The Olympic Games creates a spectacle that enthralls the world every four years. Countries enter a competitive bidding process to select a new host, hoping to enhance their international image and attract tourism. Among many other preparations, the host nation commits to meeting recommended air quality standards to safeguard the health of athletes, visitors, and residents.

Studies indicate that air pollution can affect performance and compromise the health of those engaged in competitive sports and outdoor physical activities. Through his presentation at IIASA in July, Professor Tong Zhu from the College of Environmental Sciences and Engineering at Peking University expounded on health effects arising from a major air pollutant: particulate matter measuring 2.5 microns or less, known as PM2.5.

The Bird’s Nest Stadium, Beijing Olympics 2008 © rytc | flickr

PM2.5 is made up of fine particles smaller than human hair, pollen or mold. These tiny particles are released into the atmosphere from many sources: burning solid fuels and waste, wildfires, emissions from industry, vehicles, construction and mining, volcanic eruptions, and dust. ‘‘It is difficult to tackle particulate matter as its chemical composition changes when it mixes with other substances in the air. It can also be transported far from the different sources depending on weather conditions and topography,’’ said Zhu.

Once inhaled, the minute particles travel deep into the lungs and enter the bloodstream, leading to impaired brain, respiratory, and heart function. Lung cancer, stroke, chronic obstructive pulmonary disease and lowered life expectancy are all associated with PM2.5 exposure. Taking part in oxygen-demanding physical activities such as long-distance races, jogging, and cycling requires breathing more through the mouth than nose. This increases the likelihood of inhaling harmful pollutants, especially in areas where concentrations are high.

Hosting international sport events such as the Olympics Games comes with commitment to improve air quality standards to safeguard the health of athletes, visitors, and residents © Pete Niesen | Shutterstock

China is a densely populated and industrialized country with coal as the main source of energy. Eighty-three percent of China’s population live in regions whose PM2.5 levels exceed World Health Organization’s guidelines, compared to 32% of the world population. Use of coal for domestic heating goes up during the winter, generating more particulate matter pollution indoors. In 2010, 1.2 million people died in China as a result of particulate matter pollution; it was the country’s fourth leading cause of death after diet, high blood pressure, and smoking. ‘‘Electricity would be a better option but is highly priced, hence the preference for biomass fuels by residents. Phasing out coal and switching to renewable energy and cleaner production technologies would greatly alleviate the problem,’’ said Zhu.

Zhu was involved in several initiatives to improve air quality in preparations for the 2008 Beijing Olympics. Measures included temporary relocations of more polluting industries and complete shutdown of coal plants, limiting construction projects, and transport restrictions. For instance, public transport and cycling was promoted to cut the number of vehicles on the road and reduce emissions.

Although short term, steps taken to reduce PM2.5 and other pollutants also benefited locals living in Beijing and adjacent cities that were selected as sporting and training venues. This meant fewer people seeking outpatient and inpatient medical services, and fewer deaths. The economy also benefited from a healthy labor force.

Professor Tong Zhu and Verena Rauchenwald from the Air Quality and Greenhouse Gases Program after the presentation on health effects of PM2.5 at IIASA © Caroline Njoki | IIASA

IIASA’s own work on air pollution spans 30 years, has shaped EU air pollution policy, and is now being applied to Asian countries including China. The IIASA Greenhouse Gas and Air Pollution Interactions and Synergies model enables countries to identify and select suitable cost-effective measures to tackle air pollution and reduce associated health problems.

The PM monitoring in China, which was initiated for the Olympic Games, using both satellite and ground-based observations, continues and has been expanded to cover more sites in the country. Information generated about air quality status is now distributed to concerned authorities to develop or reinforce regulatory measures. Air quality alerts enable residents know when it is safe to engage in outdoor activities or adopt safety measures.

China anticipates cleaner air from implementation of long-term policies and programs already in place. Investing in air quality means healthier people and alongside that, lively stadiums with athletes and cheering crowds, more medals, and world records.

References

Rich DQ, Kipen HW, Huang W, Wang G et al (2012). Association Between Changes in Air Pollution Levels During the Beijing Olympics and Biomarkers of Inflammation and Thrombosis in Healthy Young Adults. JAMA 307 (19): 2068-78

West JJ, Cohen A, Dentener W, Brunekreef B et al (2016). What We Breath Impacts Our Health: Improving Understanding of the Link Between Air Pollution and Health. Environmental Science and Technology 50: 4895-4904

Zhu T (2017). Health Effects of PM2.5 in China: Scientific Challenges and Policy Implications. Presentation by Professor Tong Zhu on 11 July 2017 at IIASA.

This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.

Interview: Coal, natural gas, and clean air for China

Jun Liu, a PhD student at the College of Environmental Sciences and Engineering in Peking University, Beijing, China, has won the annual Mikhalevich Award for her outstanding research as part of the 2014 Young Scientists Summer Program (YSSP) in IIASA’s Mitigation of Air Pollution and Greenhouse Gases research program.

Jun Liu, second from right, at the YSSP award ceremony in August 2014.

Jun Liu, second from right, at the YSSP award ceremony in August 2014.

Could you tell me a bit about yourself? Where are you from and what do you study?
I’m a fifth-year PHD student from College of Environmental Sciences and Engineering in Peking University, Beijing, China. My major is Environmental Sciences. My main fields of scientific interest include source of air pollution, regional air quality modeling, mitigation policy and health effects of atmospheric air pollutants.

Why did you apply to the Young Scientists Summer Program?
For a long time before the YSSP, I had read many excellent research papers on the RAINS and GAINS model. It was developed at IIASA. I hoped to have chance to utilize the model in my research. At the same time, I was so lucky to learn about YSSP application from my supervisors when I was visiting in Princeton University in winter 2013. So I applied for the program.

Please tell me about your research project: What was the question you were trying to answer?
In the background of Russian-China gas deal signed in May 2014, we wanted to discuss and compare the potential air quality benefits for coal substitution strategies between power plants, industrial boilers, and residential cooking and heating activities.

What did you find?
We found that whereas more efforts were directed at the power sector, replacing coal in power sector is actually the least effective strategy to reduce pollutants emissions. Instead, coal substitution in the residential sector achieves the highest potential for emission reduction and air quality benefits.

Thick air pollution is a common problem in many areas of China. Credit: V.T. Polywoda via Flickr.

Air pollution is a serious and growing problem in many areas of China. Credit: V.T. Polywoda via Flickr.

Why is this research important for policy or society?
As we know, China is facing serious air pollution problems. Replacing coal with natural gas is one of the important strategies to reduce this air pollution. Historically, the power sector is the largest coal consumer and receives highest priority for reducing coal use, but the residential sector is scarcely discussed. It is an urgent time for China to propose a rational and effective distribution plan across different sectors for our limited natural gas resources.

My study shows that informed decision making should direct strategies to maximize the air quality and human health benefits, rather than focusing on the control of coal consumption. From this perspective, the residential sector is more promising than power sector and industrial boilers.

How are you planning to continue this research when you return to IIASA?
I plan to finish writing papers for the natural gas scenarios and continue with other policy relevant work, such as potential role of agricultural ammonia emission in air pollution in China.

What was your favorite aspect of the YSSP and IIASA?
First, The YSSP encourages an interdisciplinary perspective and integrated method. Second, we have lots of opportunities to improve our research through discussions with our research teams, our supervisors at IIASA, and experts in other fields who are also at IIASA.  Also we can communicate and learn from other YSSPers to improve our work. The three-month length of the program is highly productive and effective.

What was your favorite moment of the summer?
 There were many moments: I particularly enjoyed the many discussions with my supervisors and my colleagues in my research program, the unforgettable trip with YSSPers to Hallstatt, Asia Day, and the awards ceremony.

Jun Liu, seated at left, and her colleagues in the Mitigation of Air Pollution and Greenhouse Gases research program

Jun Liu, seated at left, and her colleagues in the Mitigation of Air Pollution and Greenhouse Gases research program

What is the optimal fertility rate?

By Erich Striessnig, IIASA World Population Program

Credit: Héctor Gómez Herrero via Flickr (Creative Commons License)

Is replacement level fertility really the best for society? Maybe not, say IIASA researchers. Photo Credit: Héctor Gómez Herrero via Flickr (Creative Commons License)

When asked what a desirable fertility level for populations might be, most politicians, journalists, and even social scientists would say it is around two children per woman, as this would – on the long run – prevent a population from either exploding or dying out. Other reasons for championing replacement level fertility include maintaining the size of the labor force and stabilizing the dependency ratio. But what is the evidence for this rule of thumb?

My colleague Wolfgang Lutz and I aimed to answer this question in a new study published in the journal Demographic Research. We found, not surprisingly, that the optimal fertility level strongly depends on what you mean by optimal.

The criteria for optimal fertility have often been motivated by nationalistic desires for larger and thus more powerful nations. Today our concerns run more towards the dangers of overpopulation for the environment, the climate, and the limited resources on Earth, dampening the enthusiasm for high fertility rates. But as fertility rates fall in many countries around the world, there is a growing concern about aging populations and an increasing number of elderly depending on an ever smaller number of people actively participating in the labor force.

While all of these fears relate to the same problem – an unbalanced population age-structure – the resulting assessments of what level of fertility would be desirable completely ignore the heterogeneity of the population with regard to important demographic characteristics, especially the population’s education structure.

In our study, we wanted to account for the fact that more education not only has higher economic costs, including later entry to the labor market and higher life expectancy, which can hardly been seen as a negative effect. But education also leads to higher productivity, less unemployment, and a healthier workforce that would on average retire later. To include these factors in our assessment, we ran thousands of simulations using varying constant rates of fertility.

What we found is that when we factor in education, the level of fertility that on the long run would lead to the lowest level of dependency is well below the supposedly magical level of two children per woman.

We also tried to link the effects of different fertility rates to the resulting environmental burden by factoring in expected carbon emissions. Not surprisingly, higher rates of fertility lead to faster population growth and more emissions. That suggests that an environmentally aware society should aim for even lower fertility levels.

While our research is not intended to prescribe fertility levels for individuals and countries, the conclusions drawn from this thought experiment suggest that the widespread popular notions that current fertility levels–for example in France or the US are just right because they are around replacement level, whereas they are too low in countries like Germany or Austria–may be wrong. According to our new study, the opposite is true.

Reference
Striessnig, E, Lutz W. (2014) How does education change the relationship between fertility and age-dependency under environmental constraints? A long-term simulation exercise Demographic Research, 30(16):465-492 http://www.demographic-research.org/volumes/vol30/16/

Note: This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.