Deprecated: mysql_connect(): The mysql extension is deprecated and will be removed in the future: use mysqli or PDO instead in /opt/wpiiasa.iiasa.ac.at/wordpress/wp-includes/wp-db.php on line 1578
adaptation | nexus

Beating the heat with more data on urban form and function

By Linda See, IIASA Ecosystems Services and Management Program

We had another very hot summer this year in Europe and many other parts of the world. Many European cities, including London, Madrid, Frankfurt, Paris and Geneva, broke new temperature records.

Cities are particularly vulnerable to increasing temperatures because of a phenomenon known as the urban heat island effect. First measured more than a half a century ago by Tim Oke, the increased temperatures measured in urban areas are a result of urban land use, or higher amounts of impervious surfaces such as concrete and concentrated urban structures. The urban heat island effect impacts human health and well-being. It’s not just a matter of comfort: during the heat wave in 2003, more than 70,000 people in Europe are estimated to have perished, mostly urban dwellers.

IMG_7148

Summer 2015 in Ljubljana, Slovenia. ©K. Leitzell | IIASA

While climate models have many uncertainties, they do all agree that the urban heat island effect will increase in frequency and duration in the future. A recent article by Hannah Hoag in Nature paints a bleak picture of just how unprepared cities are for dealing with increasing temperatures. The paper cites positive and negative examples of mitigation from various cities but it falls short of suggesting a more widely applicable solution.

What we need is a standardized way of approaching the problem. Underlying this lack of standards is the paucity of data on the form and function of cities. By form I mean the geometry of the city–a 3D model of the buildings and road network, and information on the building materials—as well as a map of the basic land cover including impervious surfaces like roads and sidewalks, and areas of vegetation such as gardens, parks, and fields. Function refers to the building use, road types, use of irrigation and air conditioning and other factors that affect local atmospheric conditions. As climate models become more highly resolved, they will need vast amounts of such information to feed into them.

These issues are what led me and my colleagues (Prof Gerald Mills of UCD, Dr Jason Ching of UNC and many others) to conceive the World Urban Database and Access Portal Tools (WUDAPT) initiative (www.wudapt.org). WUDAPT is a community-driven data collection effort that draws upon the considerable network of urban climate modelers around the world. We start by dividing a city into atmospherically distinct areas, or Local Climate Zones (LCZs) developed by Stewart and Oke, which provides a standard methodology for characterizing cities that can improve the parameters needed for data-hungry urban climate models.

Using freely available satellite imagery of the Earth’s surface, the success of the approach relies on local urban experts to provide representative examples of different LCZs across their city. We are currently working towards creating an LCZ classification for all C40 cities (a network of cities committed to addressing climate change) but are encouraging volunteers to work on any cities that are of interest to them. We refer to this as Level 0 data collection because it provides a basic classification for each city. Further detailed data collection efforts (referred to as Levels 1 and 2) will use a citizen science approach to gather information on building materials and function, landscape morphology and vegetation types.

The Local Climate Zone (LCZ) map for Kiev.

The Local Climate Zone (LCZ) map for Kiev.

WUDAPT will equip climate modelers and urban planners with the data needed to examine a range of mitigation and adaptation scenarios: For example what effect will green roofs, changes in land use or changes in the urban energy infrastructure have on the urban heat island and future climate?

The ultimate goal of WUDAPT is to develop a very detailed open access urban database for all major cities in the world, which will be valuable for many other applications from energy modelling to greenhouse gas assessment. If we want to improve the science of urban climatology and help cities develop their own urban heat adaptation plans, then WUDAPT represents one concrete step towards reaching this goal. Contact us if you want to get involved.

About the WUDAPT Project
The WUDAPT concept has been developed during two workshops, one held in Dublin Ireland in July 2014 and the second in conjunction with the International Conference on Urban Climate in Toulouse; a third workshop is set to take place in Hong Kong in December 2015. More information can be found on the WUDAPT website at: http://www.wudapt.org.

References
Bechtel, B., Alexander, P., Böhner, J., Ching, J., Conrad, O., Feddema, J., Mills, G., See, L. and Stewart, I. 2015. Mapping local climate zones for a worldwide database of form and function of cities.  International Journal of Geographic Information, 4(1), 199-219.

Hoag, H. 2015. How cities can beat the heat. Nature, 524, 402-404.

See, L., Mills, G. and Ching. J. 2015. Community initiative counters urban heat. Nature, 526,43 (01 October 2015) doi:10.1038/526043b

Stewart, I.D. and Oke, T.R. 2012. Local Climate Zones for urban temperature studies. Bulletin of the American Meteorological Society, 93(12), 1879-1900.

Wake, B. 2012. Defining local zones. Nature Climate Change, 2, 487.

Note: This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.

Interview: Population characteristics and the climate

IIASA demographer Erich Striessnig talks about new research linking population change with climate change scenarios.

What does your research say about population and climate?
In our recent review article published in the journal Population Studies, we give a summary of much of the work that has been carried out over the past few years both at IIASA and at the Wittgenstein Centre for Demography and Global Human Capital (IIASA, VID/ÖAW; WU) on the contribution of changes in population size and structures to greenhouse gas emissions, as well as societies’ capacity to adapt to climate change. Similar to Mia Landauer in last week’s blog entry, we emphasize the importance of addressing challenges to mitigation and adaptation jointly.

What’s new or unexpected in this study?
The main novelty behind our approach is the explicit inclusion of the full population detail by age, sex, and educational attainment in assessments of societies’ future adaptive and mitigation potential. This is exemplified in the context of IPCC-related climate change modelling which until recently has included only very limited information on the future of population. The new Shared Socioeconomic Pathways (SSPs), which were developed with a huge contribution by IIASA, are an important step to overcoming this situation and to make models of both future greenhouse gas emissions, as well as vulnerability and adaptive capacity with respect to climate change far more realistic.

Population characteristics - not just size - make a major impact on greenhouse gas emissions as well as people's ability to adapt to a changing climate. ©Chris Ford via Flickr

Population characteristics – not just numbers – make a major impact on greenhouse gas emissions as well as people’s ability to adapt to a changing climate. ©Chris Ford via Flickr

Why is it important to consider the composition of population in regards to future climate change issues?
When thinking about the challenges of the future, it is important also to think about the capabilities that future societies will have to face them. I don’t mean that we should simply lean back and wait for science-fictional future technologies to solve all the problems of humanity, but a look at the changing future composition of populations around the world gives reason for optimism that future societies will be better at preparing, coping, and dealing with the consequences of yet unavoidable climate change than we are today.

What are the links between education and climate change?
Particularly in the developing world, education leads to reduced poverty. But economic growth and the resulting greater affluence, and consumption, also increases global CO2 emissions. So on a first look, education appears to worsen climate change. This has made some environmental activists skeptical about the value of education in the context of mitigation. But to avoid playing poverty eradication and well-being against climate change mitigation, it is necessary to look at behavioral differences at given levels of income. In fact, better education has been shown to be related to more eco-friendly consumption behavior, especially when it comes to home energy use and transportation, two of the main drivers of climate change. In addition to that, education has also been a major driver of technological advancements in the transition to cleaner energy sources.

Research shows that people's education levels also play a role in how adaptable they are to potential climate-related impacts such as storms and floods. ©Aldrich Lim via Flickr

Research shows that people’s education levels also play a role in how adaptable they are to potential climate-related impacts such as storms and floods. ©Aldrich Lim via Flickr

How do the new SSPs bring demography into the study of climate change?
Population growth is undoubtedly one of the main drivers of greenhouse gas emissions and thus climate change. What’s far less acknowledged is the importance of differential climate impact depending on demographic characteristics. Groundbreaking work by researchers from IIASA and the National Center for Atmospheric Research (NCAR) featured in the article has shown that people have different footprints when they are young than when they are old and that household consumption differs between rural and urban dwellers. Providing different scenarios for the future composition of populations by age, sex, and educational attainment, the new SSPs for the first time allow researchers from different fields to study the dynamics between population and climate change within a common reference frame.

References
Lutz W, Striessnig E (2015) Demographic aspects of climate change mitigation and adaptation. Population Studies: A Journal of Demography, 69(S1):S69-S76 (April 2015). doi: 10.1080/00324728.2014.969929

O’Neill, Brian C., Michael Dalton, Regina Fuchs, Leiwen Jiang, Shonali Pachauri, and Katarina Zigova. “Global Demographic Trends and Future Carbon Emissions.” Proceedings of the National Academy of Sciences 107 (October 2010): 17521–26. doi:10.1073/pnas.1004581107.

Note: This article gives the views of the interviewee, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.

Interview: Linking climate adaptation and mitigation

In a new study in the journal Climatic Change, IIASA Guest Research Scholar Mia Landauer explores the interrelationships between policies dealing with climate change mitigation and adaptation.

Why did you decide to do this study?
Adaptation and mitigation have been traditionally handled as two separate policies to combat climate change. We wanted to explore whether adaptation and mitigation can or should be considered together, because the implementation of the two policies takes place at different scales and the goals of the two climate policies are often considered distant from each other. We approached this question with a systematic literature review, because although such reviews are common in other research fields such as health sciences, there are only a few examples in social and environmental sciences. Ours was the first systematic analysis on how the interrelationships have been studied across different research fields and how these studies have conceptualized the issue.

The United Nation Headquarters complex in New York turns out their lights in observance of “Earth Hour,” in 2015. Credit: John Gillespie via Flickr

Cities are at the forefront of climate policy making and climate impacts. The United Nation Headquarters complex in New York turns out their lights in observance of “Earth Hour,” in 2015. Credit: John Gillespie via Flickr

What were the major findings of your study? What was new or unique?
We found that cities in particular should consider adaptation and mitigation together, because cities are in the forefront of climate policy making and urban actors have to negotiate trade-offs between the two climate policies across multiple scales. We found the highest number of publications on interrelationships between adaptation and mitigation from the field of urban studies.

Our systematic review provides knowledge on how synergies can be identified and conflicts avoided across different urban sectors and scales which is valuable for urban decision makers and planners when they have to consider climate policy making and planning practices.

Why are cities important when researching climate change adaptation and mitigation?
Our systematic review reveals that there is an increasing interest to study the interrelationships especially in cities, which face challenges of global change both in developing and developed countries. Especially under limited resources, integrated adaptation and mitigation strategies can provide a possibility to increase efficiency of cities’ responses to climate change.

A green wall in Paris shows just one example of building innovations to help mitigate climate change. Credit: Mia Landauer 2013

A green wall in Paris shows just one example of building innovations to help mitigate climate change. Credit: Mia Landauer 2013

What are the major conflicts and synergies you identified?
At the organizational scale, the trade-offs and conflicts we found between adaptation and mitigation showed up especially in urban policy and administrative processes, and allocation of resources. In practice, conflicts appear especially when there are competing land uses such as between public and private land. We also identified a number of synergies, which are indications of positive interrelationships. In practice, synergies can be found particularly in the building, infrastructure and energy sectors, with examples ranging from passive building design to urban greening and alternative energy options. In order to enhance synergies, changes in regulations and legislation, policy and planning innovations, raising awareness and cooperation between different actors and sectors should be considered.

How can this information be applied for policy making?
Integration of adaptation and mitigation can reduce vulnerability to climate change and help to implement climate policy and planning in a resource-efficient manner. Our analysis identified many opportunities that can be gained from integration of adaptation and mitigation. Especially in cities we find that it can be beneficial for decision makers and planners to consider adaptation and mitigation policies together, in order to avoid conflicts in planning practices and negotiate difficult trade-offs.

Reference
Landauer M, Juhola S, Soederholm M (2015) Inter-relationships between adaptation and mitigation: a systematic literature review. Climatic Change, Article in press (Published online 8 April 2015) http://dx.doi.org/10.1007/s10584-015-1395-1

Note: This article gives the views of the interviewee, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.

A long road ahead on risk-sensitive development in Madagascar

By Junko Mochizuki, IIASA Risk, Policy and Vulnerability Program

As economic losses due to natural disasters rise globally, there is an increasing consensus that the impacts of public and private investments on disaster risk must properly be monitored and evaluated. Such “risk-sensitive investment” is increasingly recognized as good practice in both public and private sector decision making. As we look beyond the Post-2015 development agenda, the incorporation of risk is increasingly becoming a crucial element to sustainable and resilience development throughout the world.

Bamboo shelters and protected water sources can mitigate risks during and following a disaster ©EU/ECHO Malini Morzaria

Risk reduction  measures such as bamboo shelters and protected water sources can mitigate risks during and following a disaster ©EU/ECHO Malini Morzaria via Flickr

While risk sensitive investment will likely receive great fanfare at the World Conference on Disaster Risk Reduction to be held in Sendai next month, the prospects for achieving such investments are still distant for many developing countries. Despite much recent progress to collect and analyze natural disaster damage, loss, and risk information globally, data quality remains largely poor for these countries. Many developing countries also lack the expertise to interpret and use such data effectively.  Even when capacity exists at the technical staff level, political will and financial capacity may not be sufficient to use risk information tangibly and invest in risk reduction activities.

My participation at a recent workshop in Madagascar, the Training Program on Disaster Risk Assessment and Optimization of Public Investments in Reducing Economic Losses in January confirmed my sense of this inadequate on-the-ground reality. With a per capita GDP of approximately $460 per year, Madagascar is one of the poorest countries and, located in the western corner of the Indian Ocean, one of the most highly exposed to natural disaster risk. In 2008 for example, three consecutive cyclones caused more than $330 million in damage and losses. The annual average loss (AAL) from cyclone wind alone is estimated to be $74 million or nearly 1% of the country’s GDP.  After two days of capacity-building training on risk assessment and investment decision-making tools such as IIASA’s Catastrophe Simulation (CATSIM) model and Probabilistic Cost-Benefit Analysis (CBA), discussions by technical staff centered around how to fill the large gap between the reality of where they stand now and where they should be in the future.

At the workshop, the participants asked questions such as “How can we strengthen contingency funding and the mainstreaming of disaster risk reduction at the same time?” and “What can a cash stripped government do when donors themselves do not seem to allocate funding based on the tangible needs of a country’s natural disaster risks?”

Madagascar

Workshop in Madagascar. Credit: Junko Mochizuki

Given the unique constraints facing developing countries, solutions must be tailored to their specific needs, however much of the know-how and technological options that have worked in the developed world cannot be easily replicated in a country like Madagascar.  There are no easy answers, but the participants’ earnest opinions certainly gave me a positive impression that they are serious about taking disaster risk into account in their development.

As we deliberate the post-2015 goals on climate change, disaster risk reduction, and sustainable development, it is vital that the international community consider these important questions: Given the unique constraints of developing countries, what can our state-of-the-art science produce as usable and useful information for the realities of their decision making? There are more dialogues to be had and research to be conducted incorporating their viewpoints. This workshop provided an important opportunity to exchange ideas and a glimpse into the real challenges of risk sensitive investment in the developing world.

Note: This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.

How can research help achieve resilience?

By Elisabeth Suwandschieff, Research Scholar, IIASA Ecosystems Services and Management Program

IMG_3114

Vienna, Austria

We live in a world that is fluid and diverse. Yet policymakers have to find solutions to problems that are definitive and effective, able to adapt to uncertain, changing, and challenging environments. How can research help policymakers to achieve such resilience?

At last week’s 4th Viennese Talks on Resilience and Networks, I listened to a number of talks on this topic from prominent figures in politics, military, research, and the private sector who came together to discuss future potential pathways for Austria. Speakers from politics emphasized the importance of social solutions such as greater investment in education. Meanwhile researchers from IIASA and other institutions brought perspective from systems analysis methods and explained how research on dynamic systems can inform policy making.

System dynamics view
From the research perspective, IIASA’s Brian Fath and others brought a systems analytical view of complex systems and their dynamics. They explained that complex systems such as organizations, businesses, and cities go through different stages in their “ecocycle.” Understanding the cycle and process is key to influencing its development.

FAS.research Director Harald Katzmair argued that life, as a complex system, can be seen as a process of growth, stagnation, destructurization and reorganization. In a recent research project, Katzmair found that the main factor in achieving resilience was the ability of the system to remain flexible through improvisation, collaboration, behavioral change and openness. If we apply this to our understanding of the world it becomes necessary to rethink our approach to leadership in every aspect.

“Our world is not a closed system; it does not consist of one choice, one idea, one currency,” said Katzmair.

Fath said that resilience is achieved by successfully managing each stage of the life cycle, explaining that even collapse can be seen as a key feature of system dynamics, because it results in developmental opportunities. Through disturbance and adaptive change in the landscape, new landscapes can be shaped.

Applying research to resilience
Many of the research talks were mathematical and complex. How can such research help in achieving resilience on a practical level? The issue for policymakers is that they have to provide definitive solutions when actually we live in a world that is fluid and diverse – therefore we need a diversified portfolio of problem solving. That is, solutions must be broad without losing focus. They must be effective, but remain flexible and open.

Research can bring different experiences together, provide a platform and a common language that can be shared. Systems thinking is a powerful way to condense the different ways of thinking and produce a portfolio of options rather than provide rigid solutions.

The adaptive cycle (Burkhard et al. 2011)

The adaptive cycle (Burkhard et al. 2011)

Note: This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.