What would an oil spill mean for the Arctic?

By Parul Tewari, IIASA Science Communication Fellow 2017

As climate change warms up the planet, it is the Arctic where the effects are most pronounced. According to scientific reports, the Arctic is warming twice as fast in comparison to the rest of the world. That in itself is a cause for concern. However, as the region increasingly becomes ice-free in summer, making shipping and other activities possible, another threat looms large. That of an oil spill.

©AllanHokins I Flickr

While it can never be good news, an oil spill in the Arctic could be particularly dangerous because of its sensitive ecosystem and harsh climatic conditions, which make a cleanup next to impossible. With an increase in maritime traffic and an interest in the untapped petroleum reserves of the Arctic, the likelihood of an oil spill increases significantly.

Maisa Nevalainen, as part of the 2017 Young Scientists Summer Program (YSSP), is working to assess the extent of the risk posed by oil spills in the Arctic marine areas.

“That the Arctic is perhaps the last place on the planet which hasn’t yet been destroyed or changed drastically due to human activity, should be reason enough to tread with utmost caution,” says Nevalainen

Although the controversial 1989 Exxon Valdez spill in Prince William Sound was quite close to the Arctic Circle, so far no major spills have occurred in the region. However, that also means that there is no data and little to no understanding of the uncertainties related to such accidents in the region.

For instance, one of the significant impacts of an oil spill would be on the varied marine species living in the region, likely with consequences carrying far in to the future. Because of the cold and ice, oil decomposes very slowly in the region, so an accident involving oil spill would mean that the oil could remain in the ice for decades to come.

Thick-billed Murre come together to breed in Svalbard, Norway. Nevalainen’s study so far suggests that birds are most likely to die of an oil spill as compared to other animals. © AllanHopkins I Flickr

Yet, researchers don’t know how vulnerable Arctic species would be to a spill, and which species would be affected more than others. Nevalainen, as part of her study at IIASA will come up with an index-based approach for estimating the vulnerability (an animal’s probability of coming into contact with oil) and sensitivity (probability of dying because of oiling) of key Arctic functional groups of similar species in the face of an oil spill.

“The way a species uses ice will affect what will happen to them if an oil spill were to happen,” says Nevalainen. Moreover, oil tends to concentrate in the openings in ice and this is where many species like to live, she adds.

During the summer season, some islands in the region become breeding grounds for birds and other marine species both from within the Arctic and those that travel thousands of miles from other parts of the world. If these species or their young are exposed to an oil spill, then it could not only result in large-scale deaths but also affect the reproductive capabilities of those that survive. This could translate in to a sizeable impact on the world population of the affected species. Polar bears, for example, have, on an average two cubs every three years. This is a very low fertility rate – so, even if one polar bear is killed, the loss can be significant for the total population. Fish on the other hand are very efficient and lay eggs year round. Even if all their eggs at a particular time were destroyed, it would most likely not affect their overall population. However, if their breeding ground is destroyed then it can have a major impact on the total population depending on their ability and willingness to relocate to a new area to lay eggs, explains Nevalainen.

Due to lack of sufficient data on the number of species in the region as well as that on migratory population, it is difficult to predict future scenarios in case of an accident, she adds. “Depending on the extent of the spill and the ecosystem in the nearing areas, a spill can lead to anything from an unfortunate incident to a terrible disaster,” says Nevalainen.

©katiekk I Shutterstock

It might even affect the food chain, at a local or global level. “If oil sinks to the seafloor, some species run the risk of dying or migrating due to destroyed habitat – an example being walruses as they merely dive to get food from the sea floor,” adds Nevalainen. As the walrus is a key species in the food web, this has a high probability of upsetting the food chain.

When the final results of her study come through, Nevalainen aims to compare different regions of the Arctic and the probability of damage in these areas, as well as potential solutions to protect the ecosystem. This would include several factors. One of them could be breeding patterns – spring, for instance, is when certain areas need to be cordoned off for shipping activities, as most animals breed during this time.

“At the moment there are no mechanisms to deal with an oil spill in the Arctics. I hope that it never happens. The Arctic ecosystem is very delicate and it won’t take too much to disturb it, and the consequences can be huge, globally,” warns Nevalainen.

About the Researcher

Maisa Nevalainen is a third- year PhD student at the University of Helsinki, Finland. Her main focus is on environmental impacts caused by Arctic oil spills, while her main research interests include marine environment, and environmental impacts of oil spills among others. Nevalainen is working with the Arctic Futures Initiative at IIASA over the summer, with Professor Brian Fath as her supervisor and Mia Landauer and Wei Liu as her co-supervisors.

This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.

Disappearing Act: Bolivia’s second largest lake dries up

By Parul Tewari, IIASA Science Communication Fellow 2017

In 2016, Bolivia saw its worst drought in nearly 30 years. While the city of La Paz faced an acute water shortage with no piped water in some parts, the agricultural sector was hit the hardest. According to The Agricultural Chamber of the East, the region suffered a loss of almost 50% of total produce. Animal carcasses lay scattered in plain sight in the valleys, where they had died looking for watering holes.

Lake Poopo (Bolivia) before it dried up © David Almeida I Flickr

One of the most dramatic results of this catastrophic drought was that Lake Poopo, (pronounced po-po) Bolivia’s second largest lake was drained of every drop of water. Located at a height of approximately 1127 meters, and covering an area of 1,000 square kilometers, what remains of it now resembles a desert more than a lake. This event forced the fishing community of Uru Uru, which depended on the lake, to either migrate to other lakes or look for alternate livelihood options.

Lake Poopo is located in the central South American Altiplano, one of the largest high plateaus in the world (Bolivia’s largest lake, Titicaca, is located in the north of the region). Due to its unique topography, the highland faces extreme climatic conditions, which are responsible for difficult lives as well as widespread poverty among the people who live there.

While Titicaca is over 100 meters deep, Poopo had a depth of less than three meters. Combined with a high rate of evapotranspiration, erratic rainfall, and limited flow of water from the Desaguadero River, Poopo was in a precarious position even during the best of times. Whatever little water flowed in from the river is further depleted by intensive irrigation activities at the south of Lake Titicaca before the water makes it way down to Poopo.

Sattelite images of Lake Poopo

Changes in water levels of Lake Poopo over 30 years © U.S. Geological Survey, Associated Press

The lake’s existence had been threatened several times in the past. However, the 2016 drought was one of the most devastating ones. According to the Defense Ministry of Bolivia, early this year the lake started recovering after several days of heavy rain, restoring as much as 70% of the water. However, since the lake is a part of a very fragile ecosystem, there have been some irreversible changes to the flora and fauna in addition to the losses to the fishing communities living around the lake.

Charting a better future

Claudia Canedo, a participant of the 2017 Young Scientists Summer Program (YSSP) at IIASA, is exploring the impact of droughts and the risk on agricultural production in the light of this event, after which Bolivia declared a state of water emergency. Canedo was born and raised in the city of La Paz and experienced water shortages while growing up close to the Altiplano. This motivated her to investigate a sustainable solution for water availability in the region. With the results of her study she is hoping to ensure that such a situation doesn’t arise again in the Altiplano – that other communities directly dependent on ecosystem services, like that of Lake Poopo, do not have to lose everything because of an extreme weather event.

For a region where more than half the population is dependent on agriculture for their livelihoods, droughts serve as a major setback to the national economy. “It is not just one factor that led to the drought, though. There were different factors that contributed to the drying up of the lake and also contribute to the agricultural distress,” she says.

“The southern Altiplano lies in an arid zone and receives low precipitation due to its proximity to the Atacama Desert. Poor soil quality (high saline content and lack of nutrients) makes it unsuitable for most crops, except quinoa and potato in some areas,” adds Canedo. Residents also lack the knowledge and the monetary resources to invest in newer technology, which could possibly lead to better water management.

A woman from one of the drought affected communities in Bolivia © EU – Photo credits: EC/ECHO/Laurence Bardon I Flickr

One of the most critical factors in the recent drought was the El Nino- Southern Oscillation, the warming of the sea temperatures in the Pacific Ocean, which in turn carries the warmer oceanic winds and lowers the rate of precipitation in the highland leading to increased evapotranspiration. In 2015 and 2016, the losses due to this phenomenon were devastating for agriculture in the Altiplano, says Canedo.

In her quest to find solutions, the biggest challenge is the lack of recorded data from local weather stations for the past years. Although satellite data is available, it is too generic in nature to do a local analysis. Therefore combining ground and satellite data could enhance the present knowledge and provide consistent results of the climate and vegetation variability. If done successfully, Canedo hopes to identify a correlation between precipitation and vegetation. With this information, she can improve climate forecasting that could help the local people adapt to droughts powerful enough to turn their lives upside down.

With weather forecasts and early warning systems for extreme weather events like droughts, farmers would know what to expect and would be able to plant resilient varieties of crops. This might not earn them the same profits as in a normal year, but would not result in a failed crop. Claudia aims to come up with a drought index useful for drought monitoring and early warning, which will integrate short-term and long-term meteorological predictions.

Perhaps, in the future, with this newfound knowledge, the price for extreme weather events won’t be paid in terms of lost ecosystems like that of Lake Poopo, robbing people of their lives and livelihoods.

About the Researcher

Claudia Canedo is a participant in the 2017 IIASA YSSP. She is pursuing a doctoral program in water resources engineering at Lund University, Sweden. She is interested in studying the hydrological and climatological conditions over small basins in the South American highlands. The aim of her research is to define water resources availability and find strategies for sustainable water management in the semi-arid region.

This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.

 

 

 

Falling fertility rates: Why do wealthier people have fewer children?

By Parul Tewari, IIASA Science Communication Fellow 2017

© KonstantinChristian I Shutterstock

Faced with a sharp decline in the global fertility levels over the last few decades, many countries today are confronted with the problem of an aging population. This could translate into an economic threat: higher health-care costs for the elderly coupled with a shrinking working population will lead to lower income-tax revenues to provide for these rising costs. This can already be seen in countries like Japan, Spain, and Germany. With an increasing number of elderly dependents and not enough workers to replace them, their social support systems have become increasingly strained.

Even though in the last few decades there has been an increase in individual incomes, researchers have observed a negative correlation between the increased wealth and the number of children people choose to have. Sara Loo, as part of the 2017 Young Scientists Summer Program (YSSP), seeks to explore why people are choosing to have fewer children as their social and economic conditions change for the better.

According to a report titled World Fertility Patterns 2015, global fertility levels have gone down from just above five children in 1950 to around 2.5 children per woman in 2015. In the figure below, ‘total fertility rate’ refers to the average number of children that are born to a woman over her lifetime.

It might seem counterintuitive that better living standards would be linked to decreased fertility. One way to explain it is through the lens of cultural evolution. Loo explains that culture is constantly changing – be it beliefs, knowledge, skills, or customs. This change is reflected in people’s day-to-day behaviors and affects their choices, both professional and personal. Importantly, beliefs and customs are acquired not only from people’s parents but are largely influenced by their peers – friends and colleagues.

One of the ways in which cultural evolution has affected fertility rates is resulting from the trade-off between the number of children and the quality of life that parents desire to give each of them, says Loo. As both men and women vie for well-paying jobs to attain a higher standard of living, and as they compete for such jobs based on their education, the resources parents invest into each child’s upbringing, including education and inheritance, are crucial. Even the time parents can give to their children becomes an expensive currency.

This makes for a highly competitive environment in which everyone is trying to achieve a higher status, in order to provide better opportunities for their children. When parents have fewer children, this means giving each of them a greater chance of achieving higher status.

Loo elaborates that as everyone competes to get their children to the top of the socioeconomic ladder, this necessitates a higher investment per child, both monetarily and otherwise. The theory of cultural evolution in this case thus predicts lowered fertility as competition for well-paying jobs intensifies with a country’s development.

However, it is not that such parental strategies apply equally to all segments of a population, says Evolution and Ecology Program Director Ulf Dieckmann, who is supervising Loo’s research at the institute over the summer. He explains that it is therefore helpful to look at fertility in relation to people’s socioeconomic status, instead of just looking at a population’s average fertility rate over time.

This can give telling insights. “In many pre-industrial societies, the rich had greater numbers of children, and if anybody had less than replacement-level fertility, it was the really poor people who could not afford to raise as many children. It was over time that this correlation changed from positive to negative when richer people decided to have fewer children: if they had too many children, they could not afford to invest as much per child as was needed to secure maintaining or raising the children’s socioeconomic status. This has led to a reversal of the traditional pattern: in developed societies, fertility has been shown to drop at high socioeconomic status,” says Dieckmann.

Complementing existing research on the fertility impacts of urbanization and of women’s education and liberation, Loo plans to explore how the aforementioned mechanisms of cultural evolution can explain the observed negative correlation between socioeconomic status and fertility. Her goal is to do so using a mathematical model that can account for both economic trends and cultural trends as two key processes influencing fertility rates.

About the researcher

Sara Loo is currently a third-year PhD candidate at the University of Sydney, Australia, where her research focuses on the evolution of uniquely human behaviors. Loo is working with the Evolution and Ecology Program at IIASA over the summer, with Professor Karl Sigmund and Program Director Ulf Dieckmann as her supervisors for the project.

This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.

 

Interview: Living in the age of adaptation

Adil Najam is the inaugural dean of the Pardee School of Global Studies at Boston University and former vice chancellor of Lahore University of Management Sciences, Pakistan. He talks to Science Communication Fellow Parul Tewari about his time as a participant of the IIASA Young Scientists Summer Program (YSSP) and the global challenge of adaptation to climate change.  

How has your experience as a YSSP fellow at IIASA impacted your career?
The most important thing my YSSP experience gave me was a real and deep appreciation for interdisciplinarity. The realization that the great challenges of our time lie at the intersection of multiple disciplines. And without a real respect for multiple disciplines we will simply not be able to act effectively on them.

Prof. Adil Najam speaking at the Deutsche Welle Building in Bonn, Germany in 2010 © Erich Habich I en.wikipedia

Recently at the 40th anniversary of the YSSP program you spoke about ‘The age of adaptation’. Globally there is still a lot more focus on mitigation. Why is this?
Living in the “Age of Adaption” does not mean that mitigation is no longer important. It is as, and more, important than ever. But now, we also have to contend with adaptation. Adaptation, after all, is the failure of mitigation. We got to the age of adaptation because we failed to mitigate enough or in time. The less we mitigate now and in the future, the more we will have to adapt, possibly at levels where adaptation may no longer even be possible. Adaption is nearly always more difficult than mitigation; and will ultimately be far more expensive. And at some level it could become impossible.

How do you think can adaptation be brought into the mainstream in environmental/climate change discourse?
Climate discussions are primarily held in the language of carbon. However, adaptation requires us to think outside “carbon management.” The “currency” of adaptation is multivaried: its disease, its poverty, its food, its ecosystems, and maybe most importantly, its water. In fact, I have argued that water is to adaptation, what carbon is to mitigation.
To honestly think about adaptation we will have to confront the fact that adaptation is fundamentally about development. This is unfamiliar—and sometimes uncomfortable—territory for many climate analysts. I do not believe that there is any way that we can honestly deal with the issue of climate adaptation without putting development, especially including issues of climate justice, squarely at the center of the climate debate.

COP 22 (Conference of Parties) was termed as the “COP of Action” where “financing” was one of the critical aspects of both mitigation and adaptation. However, there has not been much progress. Why is this?
Unfortunately, the climate negotiation exercise has become routine. While there are occasional moments of excitement, such as at Paris, the general negotiation process has become entirely predictable, even boring. We come together every year to repeat the same arguments to the same people and then arrive at the same conclusions. We make the same promises each year, knowing that we have little or no intention of keeping them. Maybe I am being too cynical. But I am convinced that if there is to be any ‘action,’ it will come from outside the COPs. From citizen action. From business innovation. From municipalities. And most importantly from future generations who are now condemned to live with the consequences of our decision not to act in time.

© Piyaset I Shutterstock

What is your greatest fear for our planet, in the near future, if we remain as indecisive in the climate negotiations as we are today?
My biggest fear is that we will—or maybe already have—become parochial in our approach to this global challenge. That by choosing not to act in time or at the scale needed, we have condemned some of the poorest communities in the world—the already marginalized and vulnerable—to pay for the sins of our climatic excess. The fear used to be that those who have contributed the least to the problem will end up facing the worst climatic impacts. That, unfortunately, is now the reality.

What message would you like to give to the current generation of YSSPers?
Be bold in the questions you ask and the answers you seek. Never allow yourself—or anyone else—to rein in your intellectual ambition. Now is the time to think big. Because the challenges we face are gigantic.

Note: This article gives the views of the interviewee, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.

Interview: A community-based approach to managing human-wildlife conflicts

Ziyun Zhu is a PhD student at Peking University Centre for Nature and Society, and research assistant at the Shanshui Conservation Center, China. He is currently attending the IIASA Young Scientists Summer Program and talks to Science Communication Fellow 2017 Caroline Njoki about his current research on wildlife damage insurance schemes as a strategy to manage human-wildlife conflict.

What is your research about and what do you aim to achieve during your time at IIASA?
Wildlife insurance schemes compensate local people in case wild animals attack their livestock, or damage their crops or property, if a wolf kills a sheep, for instance. These schemes are a relatively new tool for mitigation of human-wildlife conflicts and there isn’t sufficient information on when this is the best option and where other tools may apply. My research is to clarify the different scenarios where insurance can work, based on existing insurance projects and other mitigation measures from other parts of the world. This will help improve insurance schemes for other areas.

Effective ways of managing human-wildlife conflicts are required to ensure survival of species such as the Snow leopard © Peter Wey | Shutterstock

Tell us more about the community wildlife insurance scheme?
The Tibetan Plateau contains unique wildlife including snow leopards, wolves, and Tibetan brown bears. The people living on the plateau keep yaks and sheep, and co-exist with wildlife. However, there are cases when interactions between people and carnivores result in conflict and disruption of people’s livelihoods, and may lead to retaliatory killing of wildlife.

A voluntary Community Wildlife Insurance Scheme, started by the non-governmental organization Shanshui Conservation Center in 2008, runs on premiums contributed by the members. This makes the scheme more self-sufficient than traditional government-funded compensation, which often lacks funding. The premium depends on type of animal (sheep or yak) and number they keep and also covers damage to their homes by bears. The validation process is also streamlined to ensure claims are paid out quickly.

Members meet annually to elect leaders to manage the pilot scheme, evaluate performance, and review the premiums in line with market trends. In consultation with the members, leaders determine the premium based on the market but also make them affordable. The members are also encouraged to put in place other mitigation measures.

A traditional tent made from yak wool. Tibetan people possess rich indigenous ecological knowledge © Lingyun Xiao

Herders have negative attitudes towards brown bears, yet bears attacking livestock is rare compared to other predators. Why is that?
The availability of pasture on the plateau is seasonal. Herders and their families lived in yak-wool tents until a government initiative to support them to build winter houses in the mid-1990s. When herders move from their winter to summer grounds, bears sometimes break into their mud brick houses, consume stored food, and damage property. The herders must then pay for repairs and replacements, hence the strong negative attitude towards bears. Working closely with local communities to raise awareness and develop suitable mitigation measures is key to promoting co-existence with wildlife.

 What are your highlights from working on the Tibetan Plateau?

Ziyun Zhu treasures sighting a snow leopard in the wild and his work in the Tibetan Plateau offers him an opportunity to connect with nature away from city life © Caroline Njoki | IIASA

During fieldwork to determine presence of the snow leopards on the plateau, which are very shy and elusive, one dashed from above the cave and disappeared in the rocks while we were placing camera traps. This was definitely a highlight for me. I also enjoy working with the people, who possess a rich indigenous ecological knowledge. My PhD aims to document this information and how it may contribute to conservation of Tibetan’s biodiversity. For instance, the collection of plants and hunting of animals are not allowed in certain areas designated as sacred or of high cultural importance. There is little human interference, leaving much of the area pristine.

This article gives the views of the interviewee, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.

Reference

Juan Li, Hang Yin, Dajun Wang & Ziyun Zhi (2013). Human-snow leopard conflicts in the Sanjiangyuan Region of the Tibetan Plateau. Biological Conservation 166: 118-123.