Science without policy is science, but policy without science is gambling

By Géza Tóth, Sustainability Manager Tropical Oils, SBU Ferrero and IIASA alumnus

This famous sentence providing the catchy title for my blog and inspiration throughout my professional career comes from David Grey, who was one of my great mentors at IIASA.

During my seven years at the institute, I had the opportunity to work with several research programs where I had to find my way in various disciplines. Even though I was not the typical modeler, I was fortunate to work with patient tutors and great leaders who were supporting my development and triggering constructive thoughts. I was eager to learn about the crosscutting nature of global challenges and transversal opportunities. As a natural consequence, I found myself migrating between many IIASA programs and roles, constantly on the lookout for new challenges.

I completed a multidisciplinary PhD alongside my regular work at IIASA and changed titles and topics several times. I was into regional development and sustainability dynamics of post-war geographies where you cannot omit any influencing factors, whether it be political, environmental, or socioeconomic in nature. As I look back, I believe my overall results would not be complete without the flexibility and inclusiveness that I had the privilege of experiencing at IIASA.

When I moved into the food industry, I realized that everything I had learnt at IIASA, especially the systems thinking, come in handy when tackling the complex sustainability problems the industry faces. I have always liked connecting dots and fostering collaboration. While it is difficult to pitch policy-relevant research results, I believe there is a clear business case in bringing science and industry closer together.

© Nolimit46 | Dreamstime.com

Our global food supply chains are increasingly untraceable and so we have to connect a multitude of dots. Yet, industry is a very complex animal, driven by powerful shareholder corporations with a clear business agenda. IIASA can predict futures of our declining resources, influencing social aspects, even costs and required investments of businesses. Nevertheless, transforming industry does not depend on scientific facts and publications alone. What we need is to be able to translate scientific findings into innovations that will break current business rules or even disrupt them.

I feel that one of the biggest challenges of industry is to hear and understand the voice of science. Trading is a straightforward business where sustainability can be managed by compliance. As part of my responsibility of managing palm oil supply chain sustainability at Ferrero, I learned that in consumer goods manufacturing, consumers are the main drivers for Corporate Social Responsibility actions and their behavior and consumption patterns are changing.

Severe environmental destruction and unethical labor issues heavily affect the palm oil sector. The production and trade of agricultural commodities follow the rapidly increasing demand for food but, ironically, the amount of food waste and number of hungry people is also tipping. While European policymakers send contradicting messages about whether to eat palm oil or burn it in car engines, the destruction of ancient forests has reached unprecedented levels. Time is of the essence and science must have its voice heard in the language of industry, politicians and consumers. We cannot afford to work in silos. It is time to collaborate and finally link science with people.

The IIASA Young Scientists Summer Program (YSSP) is a unique platform and I am convinced that the positive impact it creates is enormous. Although I was never officially part of the YSSP, I interacted with the participants every year and felt like one of them. Highly skilled young thinkers come together from all around the world, influence and learn from each other under IIASA mentorship and are bound to end up in various disciplines and roles out there. They will surely know how to translate applied science into the right language and channel.

As a family-owned global company, Ferrero is one of the few businesses that is able to make long-term systematic plans and has a successful history of working with a forward looking and constructive vision. Its potential to be a lighthouse model for the industry is enormous and thus its responsibility too. It should therefore come as no surprise that supporting the YSSP program was a natural first step in Ferrero’s collaboration with IIASA.

It is not easy to explain what IIASA does and how it is relevant for the industry. It is equally difficult to illustrate it with good examples. IIASA scientists have however been helping me a lot to identify appropriate channels. I hope there will be more outputs from IIASA in the future that translate science into the business case allowing us in the industry sector to connect more dots.

Note: This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.

Dance and science: A graceful partnership for change

By Jessie Jeanne Stinnett, Co-Artistic Director of Boston Dance Theater

I recently had the privilege of artistically collaborating on Dancing with the Future, a project spearheaded by Gloria Benedikt and Piotr Magnuszewski of IIASA with Martin Nowak of Harvard University. The process involved five dancers joining two scientists to create an evening-length performance-debate that toured to Harvard University’s Farkas Hall and the United Nations Conference on Sustainable Development at Columbia University this fall. The essence of this interdisciplinary project was a product of Nowak’s published research on altruism and evolution. Nowak proposes: “Evolution is not only a fight. Not mere competition. Also cooperation, cooperation is the master architect of evolution. Now that we have reached the limits of our planet, can you cooperate with the future?”

The cast from left to right: Hannah Kickert, Gloria Benedikt, Jessie Jeanne Stinnett, Mimmo Miccolis, Henoch Spinola © Daniel Kruganov

What can I do to contribute to a global effort to create sustainable practices that yield cooperation with the future? Why do I dance and what kind of impact does my dancing have on my environment and myself? As a co-artistic director, entrepreneur, choreographer, and performing artist of the young and fast-growing contemporary dance company Boston Dance Theater (BDT), I am turning to projects that are on the innovative cross-section between the arts, technology, and other disciplines because they have the most potential to have meaningful impact on the level of the creative team, the audience, and beyond. I too, am searching for practices and partnerships for BDT that yield pathways for collective problem solving, or ‘super-cooperation’. As Nowak notes, “[evolutionarily speaking] humans are super-cooperators.”

Overall, Dancing with the Future has revealed to me that scientists, dancers, and policymakers can successfully sit at the same table (or in the same theater or conference hall), tackle the same issues, and productively collaborate toward unearthing sustainable solutions.

We all had to be open to compromises — this is not an easy task in a room full of expert-leaders. I set a mantra for myself to remember that we were creating something completely new. Each time my choreographer-dancer brain sent up a red flag, I chose selectively when to share my opinion with the group. I elected to practice the Buddhist teachings of Shunryu Suzuki, captured poetically in Zen Mind, Beginner’s Mind, “In the beginner’s mind there are many possibilities, but in the expert’s there are few.” This choice opened others and myself up to creative and peaceful solutions that I otherwise wouldn’t have seen.

Conversely, I was able to offer constructive solutions at moments when working with the scientific material seemed to overwhelm the studio process, for example, dividing the existing text and music into segments and giving each of those segments a specific choreographic task that related to the content of the scientific text. This was a very simple concept that had to do with pacing and sculpting time. Once we counted out the music, it was easy for us to construct the movement score and see the overall arc of the piece.

Rehearsal with Martin Nowak © Daniel Kruganov

I learned not to be afraid of using my voice and also listening deeply. It was, at first, very intimidating to be seated across from experts in fields outside of my own. I learned that scientists and policymakers can understand, respect, and respond to the decisions I make through a process of peaceful negotiation, even when we speak different languages, were born on different continents, and may have varying political opinions. My fear was ultimately unnecessary because the very nature of this project appeals to the humanity in us all.

This form of cross-disciplinary collaboration allows participants to see our own work in a new light and to discover new languages that are exciting because we have co-authored them. For the work to be successful, the dance, science, and debate components must all have equal weight and value. Otherwise, the movement and its choreographic structure becomes the visual representation of the science rather than an equal partner. When that happens, the magic of innovative collaboration falls flat into familiar territory.

During the process, we often referred to this Chinese proverb: “Tell me, and I’ll forget. Show me, and I’ll remember. Involve me, and I’ll understand.” Dancers understand this concept in a very concrete and visceral way. For scientists, policymakers, or the general audience to understand too, they must be involved as much as possible in the process of what we are doing. If we cannot for reasons of practicality, have them with us in the studio, then we must bring them into the process in another way. It is only by involving them as collaborators that we can generate large scale, super-cooperation.

Sometimes it feels like my dancer colleagues and I exist in a vacuum: we rehearse in the confines of the studio and historically perform on stages that make us appear as ‘other’ from the people we are performing for. Western concert dance has received criticism for being an inaccessible art form and according to the 2016 report from The Boston Foundation, is the most under-funded of Boston’s performing arts. Dancers aren’t typically trained to speak about their work, and often have a hard time receiving criticism. Contemporary dance in particular, can be challenging to general audience members because the language of the art and its conceptual frameworks are sometimes not evident in the work itself — many choreographers feel creatively stifled when asked to explain their work in language and wonder why the art work can’t speak for itself.

I have come to learn that these problems are not unique to dance. After our premiere of Dancing with the Future at Harvard University, scientists thanked me for helping them to understand new meaning within the scientific research presented through my performance. Their experience of live performance elicited a keen sense of empathy that drew them into deeper understanding of the scientific findings. This collaboration yielded a tri-fold, reciprocal impact for the artists, for the scientists, and for the public.

The cast in action © Daniel Kruganov

Our work helped to bridge the traditional gap between creative team and general audience member. It can be that when a member of the public enjoys a performance, they leave the venue with a good feeling and a nice memory as a souvenir. I believe that our art form has the power to do more — to make a greater impact and to be appreciated as an inherent and necessary aspect of our society and culture.

It is our civic responsibility to continue workshopping solutions toward global cooperation and cooperation with future generations. Dancing with the Future has encouraged me, on a micro scale, that this is a reasonable and plausible endeavor. With continued care, attention toward our common goals, compassion, listening, and risk-taking, we can understand one another through the process of creation regardless of what language we speak or where we were born. The next steps may be small, but nonetheless crucial. Next season, Boston Dance Theater will commission new works by three international choreographers with the stipulation that the pieces must speak to pressing global issues, and cross-disciplinary collaboration will be a cornerstone of that production.

Dancing with the Future has revealed to me that partnerships with super-cooperators such the teams at IIASA and Harvard’s Program for Evolutionary Dynamics can bring meaningful potential to catalyze change in me as an individual and in Boston Dance Theater as an organization, while enabling us to reach our extended communities. I can’t wait for the next project!

Note: This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.

Climate risks, limits, and a need for transformational adaptation

By Reinhard Mechler, Deputy Program Director, IIASA Risk and Resilience Program

IPCC Special Report on Global Warming of 1.5°C

The Intergovernmental Panel on Climate Change (IPCC) just approved its Special Report on Global Warming of 1.5°C (SR15). It took long hours of discussions between the body of authors and representatives from about 130 IPCC member states gathered at the approval session in Korea, to get the highly anticipated report accepted. The report was requested by parties to the United Nations Framework Convention on Climate Change (UNFCCC) as set out in the Paris Agreement in 2015, that urged parties to limit warming to “well below” 2°C and pursue efforts towards 1.5°C of warming above pre-industrial levels. Countries that are severely vulnerable to climate change such as small-island states, expressed a particular need for the report. The drafted text of the summary for policymakers (SPM) remained largely intact throughout the approval session and the science was well respected by the parties (as has generally been the case for the IPCC). This bodes well for the IPCC’s process of reporting the most up to date information on climate science to national and international decision makers who closely review and comment on drafts of texts throughout the writing process.

The report, composed of five chapters and the SPM, discusses among other topics whether the Paris target of 1.5°C above pre-industrial temperature is still achievable; what the risks we face are at 1.5°C and 2°C of warming; what this will mean in terms of mitigation and adaptation; and what the synergies are between mitigation, adaptation and the Sustainable Development Goals (SDGs).

Below my take on how the SR15 answers some of these questions:

A stark warning… and indeed half a degree does make a difference

The world is on its way to breaching 1.5°C by around the 2040s, which will lead to further warming if current greenhouse gas emissions trends prevail and current nationally determined contributions (NDCs) are not upgraded. Warming can still be stabilized at 1.5°C, but it is an ambitious target that depends on halving emissions over the next 10 years and becoming carbon-neutral by 2050.

The report shows that we are already seeing serious consequences of a 1°C warming in the form of significant increases in some weather-related extreme events (such as the frequency, intensity, and/or amount of heavy precipitation in several regions), exacerbated sea level rise, and other effects on important terrestrial and oceanic systems. In terms of future warming, the report shows that a half-degree change, which we have actually seen over the last 50 years, indeed makes a difference. Risks will be higher than today at 1.5°C and will further increase at 2°C (and beyond).

Adaptation and its limits: A need for transformation?

In light of the above, adaptation is essential and needs to be ramped up. However, for the first time, the IPCC presents evidence on hard and soft limits to adaptation, of which some would already be reached at 1.5°C. Statement B6 of the SPM reads: “Most adaptation needs will be lower for global warming of 1.5°C compared to 2°C (high confidence). There are a wide range of adaptation options that can reduce the risks of climate change (high confidence). There are limits to adaptation and adaptive capacity for some human and natural systems at global warming of 1.5°C, with associated losses (medium confidence).”

So, what should we do in terms of adaptation in light of pervasive risks becoming increasingly severe and ultimately breaching adaptation limits? Statement A3.3 of the SPM suggests that, “Future climate-related risks would be reduced by the upscaling and acceleration of far-reaching, multi-level, and cross sectoral climate mitigation and by both incremental and transformational adaptation (high confidence).”

Throughout the document, the SR15 discusses what is needed in terms of standard adaptation (incremental) and transformational adaptation. An example of incremental adaptation is to continue building sea walls to manage increasing flooding from sea level rise. Adapting community and regional planning so that people, key assets, and buildings are moved out of harm’s way on the other hand, would be rather transformational–and often have a holistic and systemic component. The report also shows that more effort will be needed to better understand what transformational risk management processes may entail concretely.

Transformation: What does it take? 

Transformational adaptation may not always be needed uniformly across the globe, but as the report shows, communities in regions vulnerable to sea-level rise risk, flooding, heat, and drought already clearly need significant support, and in a 1.5°C or 2°C world, much more would be needed. The report also shows that increasing investment in physical and social infrastructure is a key enabler of necessary transformations that enhance the resilience of communities and societies. Upgrading climate adaptation efforts will be fundamental to absorbing some climate change impacts and not critically affecting the achievement of the SDGs. What is more, the SR15 points out that the coordinated pursuit of climate resilience and development is the way forward to achieving the ambitious mitigation and adaptation targets set out, while seeking achievement of development goals such as those formulated in the 17 SGDSs.

Implications

Among others, three main implications for adaption (and climate risk) science, policy, and practice can be drawn:

  1. Climate-related risks are becoming pervasive and significant with climatic change: The Paris call for limiting warming to 1.5°C should be heeded and remain the target for ambitious climate mitigation policy in order to avoid some risks from becoming irreversible and hard adaptation limits manifesting themselves.
  2. Climate-related risks are becoming pervasive due to gaps in human, physical, financial, natural, and social capacity/capitals, and increased and targeted investments to strengthen these will be needed to push soft adaptation limits out.
  3. Systemic approaches are needed to tackle high-level risks and consider synergies between adaptation, mitigation, and the SDGs as standard adaptation and disaster risk reduction may not be enough. Transformational approaches requiring large-scale and systemic change are useful in this regard.

The open question…

The final, open question for all of us is of course whether the report can be more than another wake-up call and truly be a game-changer for limiting warming to 1.5°C while ramping up adaptation efforts. The science is there. Broad-based dissemination efforts with policymakers and advisors, experts, the private sector, and civil society are being rolled out. The political will to live up to the massive mitigation and adaptation challenges needs to follow now. Little time remains, and if we truly want to limit warming to 1.5°C and mitigate the associated risks, we need to take decisive and bold steps towards carbon-neutrality and climate-resilience now.

Note: This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.

Education in, through, and for sustainable development

By Stephanie Bengtsson, researcher in the IIASA World Population Program

In the months after finishing my doctorate, I would often find myself having some variation of the following conversation upon meeting someone new, particularly in a social context:

New person: “So, what do you do?”
Me: “Actually, I’ve just finished my doctorate.”
New person [impressed]: “Wow! In what field?”
Me: “Education.”
New person [after a long pause]: “Oh.”

The tone of that “oh” has stayed with me in the years since: “You can get a doctorate in education?”, that little word seemed to say, following up with: “What does that involve? Stacking ABC blocks and looking through picture books? It can’t possibly be as challenging as a doctorate in a real subject, like economics or neuroscience.”

Many of my education colleagues around the world have had similar experiences, especially those who, like me, work primarily in the field of development. At the same time, the global news media is rife with articles about ‘failing’ school systems, a dwindling ‘supply’ of qualified teachers, ‘underperforming’ teachers, low Programme for International Student Assessment (PISA) results, and more, as the international community searches for quick-fix solutions with easily quantifiable measures of progress to address these problems, often outside the realm of education research. Generally, within the dominant development discourse, the aim of these solutions is clear: to increase attainment and improve student test scores, particularly in the so-called STEM subjects (i.e., Science, Technology, Engineering, and Mathematics), in order to build human capital and subsequently grow and sustain the labor market and economy. In other words, improvements to education are typically justified only to the extent that they will increase education’s instrumental value (leading to improvements in other sectors), rather than its intrinsic value.

As such, those of us working in international educational development often find ourselves caught in a paradox, as our sector has been (and continues to be) simultaneously under-appreciated in terms of the contribution it can make to other aspects of development and wellbeing (and subsequently under-prioritized), and over-emphasized in its role as a tool of development when it does make it onto the agenda. We therefore frequently find ourselves having to first ‘make the business case’ for education by proving its instrumental value before beginning any research or development project, in a way that would be considered ludicrous in, for instance, the sectors of health and nutrition. Once we have successfully argued that case, the pressure is on to measure inputs and narrowly-defined short-term outcomes, leaving little time to examine complex educational processes and longer-term impacts of education.

In late September 2015, Heads of State and High Representatives from around the world committed to a new sustainable development agenda consisting of 17 Sustainable Development Goals (SDGs) and 169 accompanying targets. The framing document for the SDGs, UN Resolution 70/1, Transforming our World: The 2030 Agenda for Sustainable Development, envisions an important role for education within this agenda, both as an end and a powerful means of development:

“All people, irrespective of sex, age, race, ethnicity, and persons with disabilities, migrants, indigenous peoples, children and youth, especially those in vulnerable situations, should have access to life-long learning opportunities that help them acquire the knowledge and skills needed to exploit opportunities and to participate fully in society. We will strive to provide children and youth with a nurturing environment for the full realization of their rights and capabilities, helping our countries to reap the demographic dividend including through safe schools and cohesive communities and families.” (UN 2015, article 25)

For those of us working in international educational development, the SDGs thus represent a significant step forward from the Millennium Development Goals (MDGs), as well as an opportunity to encourage the wider development community to engage with and invest in a shared vision for equitable, inclusive, quality lifelong learning opportunities.

In our new book, The Role of Education in Enabling the Sustainable Development Agenda, my colleagues and I conduct an extensive critical review of literature from a range of disciplines, attempting to find answers to these fundamental questions about the value of education and the dynamic nature of the relationship between education and development. We engage with the argument put forward in the capabilities approach to development that the capability to be educated is, in and of itself, an important freedom, and a fundamental aspect of human wellbeing. Given that processes of teaching and learning are a natural and defining characteristic of human society, we argue that education is most successful at contributing to sustainable development across all dimensions at once if, rather than being crafted as an instrument to achieve a specific and narrow development objective – no matter how worthy – education is improved on its own terms, and as an end in itself.

We also draw from recent work by the economist Kate Raworth, which attempts to connect the economic, social, and environmental dimensions of sustainable development, by combining social justice work with planetary boundaries research in order to define a space within which humanity can survive and thrive:

“Between a social foundation that protects against critical human deprivations, and an environmental ceiling that avoids critical natural thresholds, lies a safe and just space for humanity [. . .] where both human wellbeing and planetary wellbeing are assured, and their interdependence is respected.” (Raworth 2012, p. 7)

This book builds on work we carried out for the United Nations Educational, Scientific, and Cultural Organization (UNESCO) Global Education Monitoring (GEM) Report, and shares in UNESCO’s urgent sense of purpose to demonstrate not only “the potential for education to propel progress towards all global goals”, but also that “education needs a major transformation to fulfil that potential and meet the current challenges facing humanity and the planet” (UNESCO n.d., n.p.). At no point do we claim to be providing the definitive account of the role of education in the sustainable development agenda; rather, we hope that our book will inspire critical reflection, engagement, and, above all, learning, among a wide audience of scholars, students, policymakers, and practitioners alike.

References
Harber, C. (2014). Education and international development: Theory, practice and issues. Oxford: Symposium Books.
Raworth, K. (2012). A safe and just space for humanity: Can we live within the doughnut? Oxfam Discussion Paper. Oxford: Oxfam.
Sen, A. (1999). Development as Freedom. New York: Knopf.
UNESCO. (n.d). Education needs to change fundamentally to meet global development goals. Retrieved from: www.unesco.org/new/en/education/themes/leading-the-international-agenda/education-for-all/single-view/news/education_needs_to_change_fundamentally_to_meet_global_devel/

Note: This article gives the views of the authors, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.

Rice and reason: Planning for system complexity in the Indus Basin

By Alan Nicol, Strategic Program Leader at the International Water Management Institute (IWMI)

I was at the local corner store in Uganda last week and noticed the profusion of rice being sold, the origin of which was from either India or Pakistan. It is highly likely that this rice being consumed in Eastern Africa, was produced in the Indus Basin, using Indus waters, and was then processed and shipped to Africa. That is not exceptional in its own right and is, arguably, a sign of a healthy global trading system.

Nevertheless, the rice in question is likely from a system under increasing stress, one that is often simply viewed as a hydrological (i.e., basin) unit. What my trip to the corner store shows is that perhaps more than ever before a system such as the Indus is no longer confined–it extends well beyond its physical (hydrological) borders.

Not only does this rice represent embedded ‘virtual’ water (the water used to grow and refine the produce), but it also represents policy decisions, embedded labor value, and the gamut of economic agreements between distribution companies and import entities, as well as the political relationship between East Africa and South Asia. On top of that are the global prices for commodities and international market forces.

In that sense, the Indus River Basin is the epitome of a complex system in which simple, linear causality may not be a useful way for decision makers to determine what to do and how to invest in managing the system into the future. Integral to this biophysical system, are social, economic, and political systems in which elements of climate, population growth and movement, and political uncertainty make decisions hard to get right.

Like other systems, it is constantly changing and endlessly complex, representing a great deal of interconnectivity. This poses questions about stability, sustainability, and hard choices and trade-offs that need to be made, not least in terms of the social and economic cost-benefit of huge rice production and export.

An aerial view of the Indus River valley in the Karakorum mountain range of the Basin. © khlongwangchao | Shutterstock

So how do we go about planning in a system that is in such constant flux?

Coping with system complexity in the Indus is the overarching theme of the third Indus Basin Knowledge Forum (IBKF) being co-hosted this week by the International Centre for Integrated Mountain Development (ICIMOD), the International Institute for Applied Systems Analysis (IIASA), the International Water Management Institute (IWMI), and the World Bank. Titled Managing Systems Under Stress: Science for Solutions in the Indus Basin, the Forum brings together researchers and other knowledge producers to interface with knowledge users like policymakers to work together to develop the future direction for the basin, while improving the science-decision-making relationship. Participants from four riparian countries–Afghanistan, China, India, and Pakistan–as well as from international organizations that conduct interdisciplinary research on factors that impact the basin, will work through a ‘marketplace’ for ideas, funding sources, and potential applications. The aim is to narrow down a set of practical and useful activities with defined outcomes that can be tracked and traced in coming years under the auspices of future fora.

The meeting builds on the work already done and, crucially, on relations already established in this complex geopolitical space, including under the Indus Forum and the Upper Indus Basin Network. By sharing knowledge, asking tough questions, and identifying opportunities for working together, the IBKF hopes to pin down concrete commitments from both funders and policymakers, but also from researchers, to ensure high quality outputs that are of real, practical relevance to this system under stress–from within and externally.

Scenario planning

Feeding into the IBKF3, and directly preceding the forum, the Integrated Solutions for Water, Energy, and Land Project (ISWEL) will bring together policymakers and other stakeholders from the basin to explore a policy tool that looks at how best to model basin futures. This approach will help the group conceive possible futures and model the pathways leading to the best possible outcomes for the most people. This ‘policy exercise approach’ will involve six steps to identify and evaluate possible future pathways:

  1. Specifying a ‘business as usual’ pathway
  2. Setting desirable goals (for sustainability pathways)
  3. Identifying challenges and trade-offs
  4. Understanding power relations, underlying interests, and their role in nexus policy development
  5. Developing and selecting nexus solutions
  6. Identifying synergies, and
  7. Building pathways with key milestones for future investments and implementation of solutions.

The summary of this scenario development workshop and a vision for the Indus Basin will be shared as part of the IBKF3 at the end of the event, and will help the participants collectively consider what actions can be taken to ensure a prosperous, sustainable, and equitable future for those living in the basin.

The rice that helps feed parts of East Africa plays a key global role–the challenge will be ensuring that this important trading relationship is not jeopardized by a system that moves from pressure points to eventual collapse. Open science-policy and decision-making collaboration are key to making sure that this does not happen.

This blog was originally published on https://wle.cgiar.org/thrive/2018/05/29/rice-and-reason-planning-system-complexity-indus-basin.

Note: This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.

Crowdsourcing for food security

By Myroslava Lesiv, IIASA Ecosystems Services and Management Program.

The public can contribute considerably to science by filling the gaps of missing information in many research areas, for example, monitoring land use, biodiversity, or forest degradation. Crowdsourcing campaigns organized by research institutions bring together citizens interested in science and help solving research questions to the benefit of the whole world.

This June, the IIASA Geo-Wiki team ran the Global Field Size campaign, encouraging citizen scientists to classify field sizes on satellite images. Its aim was to develop a global field sizes dataset, which will be used as input to create an improved global cropland field size map for agricultural monitoring and food security assessments. The field sizes dataset can also help us determine what types of satellite data are needed for agricultural monitoring in different parts of the world.

Geo-Wiki interface for collecting field size data. Background layer: Google Maps.

Why are field sizes so important? They provide us with valuable information to tackle challenges of food security. A recent study showed that more than a half the food calories produced globally comes from smallholder farmers, who often make up the most vulnerable parts of population, living in poverty. Within this scope, the field size dataset fills the gaps of missing information, especially for countries that have a limited food supply and lack a well-developed agricultural monitoring system.

The Global Field Size campaign has been one of the most successful crowdsourcing campaigns run through the Geo-Wiki engagement platform. Within one month, 130 participants completed 390,000 tasks – that is, they classified the field sizes in 130,000 locations around the globe!

So we can see that crowdsourcing is powerful, but can we trust the data? Is it accurate enough to be used in different applications? I think it is! The Geo-Wiki team has significant experience in running crowdsourcing campaigns; one of the key lessons we have learned from previous Geo-Wiki campaigns is the importance of training the public to increase the quality of the crowdsourced data.

This campaign was designed so that the participants learned over time how to delineate fields in different regions of the world, and, at the same time, pay special attention to the quality of their submissions. At the end of the campaign, the majority of participants gave us a feedback that, to them, this campaign was indeed a learning exercise. From our end, I have to add, this was also a challenging campaign, as fields are so diverse in shape, continuity of coverage, crop type, irrigation, etc.

Global distribution of dominant field sizes. Cartography by Myroslava Lesiv. Country boundaries: GAUL. Software: ArcMap 10.1.

During the campaign, the crowd was asked to identify whether there were fields in a certain location, and determine the relevant field sizes by the visual interpretation of very high-resolution Google and Bing imagery. A “field” was defined as an agricultural area that included annual or perennial croplands, fallow, shifting cultivation, pastures or hayfields. The collected data can also be used to identify areas falsely mapped as cropland.

Now the team is focused on summarizing the results of the campaign, processing the collected field size data, and preparing them for scientific publication. We will ensure that the published dataset is of high quality and can be used by others with confidence!

This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.