The land of the midnight sun: Science to policy in the Arctic Council

By Anneke Brand, IIASA science communication intern 2016.

For Malgorzata (Gosia) Smieszek it’s all about making sound decisions, and she is not afraid of using unconventional routes in doing so. She applies this rule to various aspects of her fast-paced life. Whether it is taking the right steps in trail running races, skiing or relocating to the Arctic Circle to do a PhD.

Gosia Smieszek © J. Westerlund, Arctic Centre

Gosia Smieszek © J. Westerlund, Arctic Centre

Gosia’s passion for the Arctic began to evolve during a conversation with a professor at a time when she was contemplating the idea of returning to academia. “I remember, when he said the word Arctic, I thought: yes, that’s what I want to do. True, before I was interested in energy and environmental issues, but the Arctic was certainly not on my radar. So I went to the first bookstore I found, asked for anything about the North and the lady, after giving me a very confused look, said she might have some photo books. So I left with one and things developed from there.”

In 2013 Gosia joined the Arctic Centre of the University of Lapland in Rovaniemi, Finland. Living there is not always easy, but hey, if you get to see the Northern Lights, reindeers and Santa Claus on a regular basis, it might be worth enduring long times of darkness in winter and endless sunshine in summer. With temperatures averaging −30°C, Rovaniemi is the perfect playground for Gosia.

Running is one of Gosia’s favorite sports. She has competed in a few marathons, but her biggest race to date is the Butcher’s Run, an ultra trail of 83km over the Bieszczady mountains in Poland. Here she is running in the Tatra mountains. © Gosia Smieszek

Gosia grew up in Gliwice, a town in southern Poland, before moving to Kraków where she completed her undergraduate degree in international relations and political science. This was just before Poland’s accession to the EU, so it was the perfect time to pursue studies in this field.

She continued her studies in various locations including Belgium, France, Poland, and Austria. Before continuing her education and later working at the College of Europe, she also gained working experience as a translator at a large printing house in her home town in Poland.

For her PhD Gosia focuses on the interactions between scientists and policymakers, with the aim of enhancing evidence-based decision making in the Arctic Council. Scientific research on the Arctic has been conducted for decades, but “when it comes to translating science into practice it is still a huge challenge―on all possible levels,” she says.

“Scientists and policymakers have their own, very different, universes—with their own stories, goals, timelines, working methods and standards. It is better than in the past, but still extremely difficult to make these two universes meet.”

Gosia with fellow YSSPers, Dina, Stephanie and Chibulu during a visit to Hallstadt. © C. Luo

Gosia with fellow YSSPers, Dina, Stephanie and Chibulu during a visit to Hallstadt. © Chibulu Luo

As part of the Arctic Futures Initiative at IIASA, Gosia investigates and maps the structural organization of the Arctic Council and aims to determine the effectiveness of interactions between scientists and policymakers, as well as ways to improve the flow of knowledge and information between them.

Because of the nature of her work, Gosia spends almost half her time away from home, but you will never find her traveling without running shoes, swimming gear, and something to read. Diving, one of her greatest passions, has taken her to amazing places like Cuba and the Maldives, where meeting a whale shark face-to-face topped her list of underwater experiences.

Gosia swimming with a whale shark. ©Eiko Gramlich

Gosia swimming with a whale shark. © Eiko Gramlich

Gosia is truly hoping to make a difference with her research on science-policy interface. She says: “To me, trying to bridge science and policy is a truly fascinating endeavor. Exploring these two worlds, seeking to understand them and learning their ‘languages’ to enable better communication between them is what drives me in my research. So hopefully we can learn from past mistakes and make things better—this time.”

Note: This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.

 

Science communication in the age of cat videos

By IIASA Science Writer and Editor Daisy Brickhill.

“The thing about communicating science today is…people can always watch cat videos instead. And let’s face it, some of those clips are really funny.”

Marshall Shepherd, former president of the American Meteorological Society, smiles at the audience of this science communication seminar, aware of the frustrated sighs going on in the room, and in some cases the blank incredulity—people wouldn’t watch cat videos when they could be paying attention to my science, surely?

We are at the AAAS annual meeting, a vast conference with around 10,000 attendees from all walks of life, from toddlers to retired professors. The science presented here is truly diverse, and covers everything from radically successful new cancer treatments, to advances in artificial intelligence, to the IIASA session on how we can hope to achieve all 17 UN Sustainable Development Goals.

Shepherd is speaking of his long career engaging with the public about his work on weather systems and climate change. “Get out of your ivory tower,” he urges all researchers. There are important issues at stake, and what if no one speaks for the scientific evidence?

However, communicating science effectively is not easy. Understanding something does not mean you are automatically good at explaining it. All through academic training researchers learn how to speak to people in their own field, who talk just like them. That’s important, they might be your next reviewer, after all. But it is only one, narrow form; engaging the public requires a high level of understanding, not just of the topic, but of the audience and communication itself.

“We have left behind the old idea of science communication where brains are empty vessels waiting to be filled,” says the next speaker, Barbara Klein Pope, executive director for communications for the National Academies. “They are a swamp, and we need to explore that swamp to communicate properly.” She describes research which tested the effects of different types of communication on people’s perceptions of social science, in terms of whether they felt it was worth funding, for instance (oh yes, I sense the academic ears pricking up now).

swamp

The mind is not an empty vessel waiting to be filled, it’s a swamp to be navigated.

The findings of this work led to a framework of three clear messages. First, use exemplars—a good example can do wonders—yes, your research might be relevant across reams of different cases but general, expansive terms are often vague and a simple example can bring clarity.

Second, the all-important yet surprisingly often neglected question, “Why do we care?” Bear in mind also that it’s not why you care, you’ve made a career out of this science, we know why you care, but why should your audience care.

Finally, use metaphors. Science is often very complex, and pretty much anyone outside your field will need something they can relate to—a familiar concept that they can use to begin to explore the new territory. In case you need more convincing, the use of metaphors was shown to have a significant effect on whether the public felt the work was worth funding.

At the end of that session I was struck by the parallels between this session and another I attended on science-policy interactions with speakers Vladimír Sucha, Daniel Sarewitz, and Peter Gluckman, all working at the forefront of science-policy.

Trust, built on good communication, is vital, the speakers all agreed. Interesting conclusions should not be buried at the end of a report, they should be at the start, just as they would be for the public, and any article or briefing should be kept as short and relevant as possible. Examples and metaphors play a role here too, and a good story with persuasive anecdotes can have much more impact than a dry report.

What not to do, Sucha reminds us, is send an email saying “Here are the links to 200 peer-reviewed papers on this, you’ll find it all there.” After all, policymakers can access cat videos just as easily as the rest of us.

Note: This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.

To tackle climate change, abandon “climate policy”

By IIASA Director General and CEO Professor Dr. Pavel Kabat. This article was originally published in the Huffington Post. 

I was at the Kyoto climate talks in 1997. I remember doing the calculations, going through the proposals long into the night. I remember the moment of: “We did it. We have an international, legally binding agreement.” I remember the euphoria.

But I also remember what happened after that. As the years passed after Kyoto I saw that the reality of implementation was far from what we had envisaged. As a scientist in the field I took part in many government discussions, and I grew frustrated at the inability of institutions and governments to comply with the agreements.

More than empty promises?

More than empty promises?

These failures do not mean that Paris will just be the next in a string of ineffective climate talks. A global, UN-level agreement on climate change is necessary, and I believe Paris will deliver it. But I do not see it as providing more than a direction. Yes, we will have an agreement, but our unrelenting focus from Paris onward must be on how to implement it. And that will require a major change in our way of thinking.

Policymakers, climate scientists and society as a whole, must abandon the idea of climate change as a single, discrete issue, to be dealt with using “climate policy.” We cannot think about the future without thinking about climate change. On the other hand, we cannot deal with climate change without considering the future social and economic context. Ultimately, if we do not make climate adaptation and mitigation part of the mainstream development agenda, we will fail again.

Take the Green Climate Fund. An excellent initiative agreed at the 2009 Copenhagen climate talks, it assists developing countries in climate change adaptation. But it is designated as “climate change” money. Let’s say a dike in Bangladesh is being extended, will we advise that only 25 cm of the 40 cm extension be covered by the climate fund because technically that is all that is needed for climate change, and the rest is just “general development”?

Frankly, we shouldn’t care. We shouldn’t spend time or money on such questions. We need an institutional and financial framework within which we are able to say yes, there is a climate objective, but there is also a development objective, and a security objective, together these make up a whole, and we will invest in infrastructure accordingly.

Paris is just the beginning

Paris is just the beginning

To ensure that climate change adaptation and mitigation become integral to development, governance also must change. Future strategy cannot consist only of centralized agencies issuing endless targets. Municipalities and small regions have an important part to play. Local efforts will also be more likely to engage people, because they are closer to personal experiences. In fact, while we scientists and politicians talk in dusty rooms, younger generations are already exploring new, bottom-up solutions, such as crowd-funding and joint ownership.

Investment from the private sector is also key. In the Earth Statement, written by an alliance of 17 global-change scientists, including myself, we state that: We must unleash a wave of climate innovation for the global good, and enable universal access to the solutions we already have.

The good news is that at this moment, making the transition to a decarbonized world is still a major opportunity. We can leave behind the idea that we must put aside money to protect our economy against the threat of climate change. Investing in these global transitions can actually be hugely beneficial, both economically and socially. Changing the fundamental narrative of climate change from threat to an opportunity will trigger major innovations and transitions to sustainable economic development.

Climate science must change too. We already know the basic facts. We know that to have at least a 66% chance of keeping the temperature increase below 2°C, our greenhouse gas emissions should drop by 40-70 % between 2010 and 2050.

The next report from the Intergovernmental Panel on Climate Change, and climate research in general, now needs to get at the real issue: implementation. How do we achieve our goals in the institutional, social, and economic context? That is where the main focus should be.

Achieving a stable, sustainable future is possible. If it wasn’t, I would be doing something else with my life. I am convinced that the Paris talks will result in an important, international agreement; but the real solution lies beyond Paris, and beyond the UN altogether. It lies in integrating climate into all development and funding decisions, in giving entrepreneurs and local municipalities the space they need to innovate, and encouraging private investment into climate-friendly development. It is a great opportunity for humanity.

 

This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.

Living in two different cultures: Scientists and policymakers come together for evidence-based policy

By Tanja Kähkönen, University of Eastern Finland, School of Forest Sciences & Institute for Natural Resources, Environment and Society

This autumn I attended the first joint JRC-IIASA Summer School on Evidence and Policy, which brought together policymakers and early-career scientists like myself to learn about the evidence-policy interface. After intensive days of interacting at lectures, learning together, and sharing views during the breaks, I can really say that as scientists we are operating in a different culture to policymakers.

_SIL1470

Discussion and debate fostering greater understanding between researchers and policymakers at the JRC-IIASA summer school

This difference extends not only to what we do in our daily work, but also to what kind of language we use, how we communicate, and what level of certainty we give—or have to give—to the issues that we address. Often as scientists we are so intensively involved in our own work that we forget that communicating our research to policymakers cannot be done in the same way as communication with other researchers. This is because policymakers have different evidence needs, expected timeframes for information production, and level of discipline-specific understanding.

However, despite the different cultures, it is possible to learn to speak each others’ language and communicate more efficiently. Developing this communication was practiced throughout the course and a significant part of this took place during “masterclasses,” given by people who are themselves at the science-policy interface as part of their daily work.

I found the masterclass session on wicked problems and evidence-based policy, run by Jan Staman and Annick de Vries from the Rathenau Institute in the Netherlands, particularly attention-grabbing. They pointed out that apart from crises, for which policymakers need rapid evidence on specific topics, wicked—difficult to solve—problems such as creating climate change policy may face problems of scientific evidence overload, political dead-locks, and societal controversies.

The masterclass on uncertainty, risk and hazard, and the links to policymaking was also particularly eye-opening. Session leaders David Wilkinson and Jutta Thielen of the JRC suggested that a range of scenarios and consequences should be offered to policymakers in order to allow them to take better decisions under uncertain conditions in which risks of human loss or health hazard maybe high.

Other sessions focused on foresight, effective communication, using games for informing public and policy debates (crowdsourcing our search for solutions), big data, randomization, modeling, and the pros and cons of working at the science-policy interface—all very important topics for improving communication between scientists and policymakers.

All in all, I guess the take home messages of this course are different for each participant. As a scientist, the big messages for me came from the wrap up session in which “dos and don’ts” for evidence-informed policymaking were summarized by all the summer school participants. For the “dos” words such as trust, communication, providing clear and concise messages, being certain about something, keeping it simple, and understanding policy processes leapt out at me.

Despite the fact that the summer school lasted only three days, I am positive that it will have a lasting effect on the participants, opening a path for cross-cultural understanding between scientists and policymakers. Together improving communication to the benefit of our changing society.

_SIL1408

Participants of the first JRC-IIASA Summer School on Evidence and Policy

Note: This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.

Science for policy’s sake

By Daisy Brickhill, IIASA Science Writer and Editor

“In some senses, the science-policy process can be likened to a sausage being made,” said Dr E. William Colglazier in his lecture at IIASA this week. We could take this in different ways: that it is messy, perhaps, or that things get churned around or made to fit. But the most important parallel must surely be that if it is done right it can bring huge benefits. In this case not for your taste buds, but for humanity.

sausage2

It’s a messy business, but it’s surely worth it if we get it right: comparing the science-into-policy process with the art of sausage making.

If anyone knows what the science-policy process is like, it is Colglazier. Soon after completing his PhD in theoretical physics in 1971 he became a fellow of the American Association for Advancement of Science, providing advice for policymakers. He has been at the forefront of the science-policy interface ever since, and is perhaps best known for his role as the Science and Technology Adviser to the US Secretary of State from 2011 to 2014.

During his lecture Colglazier explored how scientists can best advise policymakers. “There’s an old joke: if a policymaker asks a scientist what time it is, the scientist will tell him how to build a watch.” To avoid this, Colglazier says, scientists need a fundamental understanding of both the needs and time frames of policy making.

The best way to achieve this is to engage. A scientific advisor is not a distant voice, hovering between knowledge and policy. Scientists must not be afraid to get involved; it is only through lots of interaction with policymakers that they will begin to understand what is needed. “Scientific advising,” says Colglazier, “is a contact sport.”

For their part, policymakers do not always understand the scientific process. To prevent this causing misunderstandings, scientists must be clear about the uncertainties in the science, and what it can and cannot say. They must explain exactly how the evidence leads to the recommendations they have given.

Colglazier also emphasized the importance of communication, something I silently cheered for, as a science writer often hoping to reach policymakers. “Telling a good story with persuasive anecdotes is often more influential than a dry, hundred-page report,” he said, and I couldn’t agree more. I have seen articles about accurate, rigorous, and important science drift by unnoticed where others, based on a more trivial studies, spark debate and engagement. The difference is often that those in the former category are three pages longer, full of impenetrable jargon, and bury their juicy conclusions at the bottom.

_MG_9269

Dr E. William Colglazier giving his lecture at IIASA this week as part of the first joint JRC-IIASA summer school on evidence and policy.

Sometimes, scientists are asked to advise on issues that go beyond science, straying into value judgements. For example, when assessing an environmental risk a scientist can give the numbers and the uncertainties and information on the consequences. But they cannot provide a definitive answer to the question that the policymaker is really asking: how safe is safe enough?

Does that mean scientists should steer clear of this territory entirely? No, says Colglazier. “Feel free to give advice when you are asked, but be honest about what the science can say.” The important thing is to remember that scientists have no special expertise when dealing with value judgements.

Ultimately, the science-into-policy process is a messy one. Scientists find it difficult to grind up the prime fillet steak of their data into the mincemeat needed for policy making. But the importance of this step should not be underestimated. Science and policy must work together if we are to achieve a sustainable future for humanity.

 

Note: This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.

Back to the future: using scenarios to road-test the policies of tomorrow

By Amanda Palazzo, IIASA Ecosystems Services and Management Program

If a company wants to build a car that is safe and reliable, they will test it in many ways. They will use wind tunnels and crash tests to identify potential weaknesses. Similarly, if policymakers want to develop the best policies possible, they need to know how they will look and succeed in several different, but realistic, possible futures. We call these futures, scenarios.

The CGIAR program on Climate Change, Agriculture, and Food Security (CCAFS) has developed and used scenarios to guide policy formulation in six global regions (Eastern and Western Africa, South and Southeast Asia, the Andes and Central America).

In July 2015, CCAFS facilitated a workshop with national partners from the government, private sector and civil society in Burkina Faso to review the development of National Plan for the Rural Sector (PNSR). They were joined by researchers from different CGIAR Research Programs (CRPs) interested in evaluating their research objectives using previously developed regional scenarios.

In a workshop in Ouagadougou, Burkina Faso, in mid-July 2015, CGIAR researchers, government planners, private sector representatives and other national experts met to tackle this question. The goal: development of the new National Plan for the Rural Sector for Burkina Faso (PNSR) and the identification of research strategies to support this plan. The tool: scenario-guided planning. Photo: Kabore Herve.

In a workshop in Ouagadougou, Burkina Faso, in mid-July 2015, CGIAR researchers, government planners, private sector representatives and other national experts met. The goal: development of the new National Plan for the Rural Sector for Burkina Faso (PNSR) and the identification of research strategies to support this plan. The tool: scenario-guided planning. Photo: Kabore Herve.

This workshop was part of a broader process, started by CCAFS in 2012 in the ECOWAS region, to bring together people who work on topics of food security, the environment, and rural livelihoods to create a platform for crafting futures for how their region could develop. Stakeholders envisioned many distinct, plausible futures that each offer a mix of opportunities and challenges against which to test policies.

In workshops held before the Burkina Faso workshop, stakeholders outlined four scenarios, along two axes of uncertainty:

  1. The degree to which states or non-state actors play the dominant role in the development of the region;
  2. The degree to which short-term or long-term priorities dominate strategic agendas.
Diagram showing four scenarios along two axes of uncertainty.

Four scenarios along two axes of uncertainty. Details>>

Agricultural development plays a leading role in all of these possible futures, because in many ECOWAS countries, including Burkina Faso, nearly a quarter of the national GDP comes from crop and livestock production. Reducing food insecurity is a challenge and understanding how improvements in crop production or livestock rearing will change the region’s demand for grassland and cropland is vital information. Yield improvements that increase the regional food supply and raise calorie consumption can be seen as a success. However, when the food supply increases through cutting down forests as a source for new agricultural land, this has long-term environmental consequences. It is important to identify such potential trade-offs.

We can use models, such as GLOBIOM and IMPACT, to tell the story of the scenarios and identify and measure trade-offs. Using our model, GLOBIOM, my IIASA colleagues and I provide insights into the development of the agriculture sector, improvements in food security, and the resulting land use change. Just as scenarios can gain credibility and become more relevant to the local realities by involving stakeholders at multiple levels, models can give credibility and consistency to the scenarios by using data and consistent representations of different systems (such as agricultural systems, for example, see this IIASA research).  To model these scenarios, we used input from stakeholders and scenario storylines to identify multiple factors driving change in Western Africa and put numerical values to these drivers: GDP, population, improvement in crop and livestock yields, integration of regional markets, and limit to deforestation. For all the scenarios, we also consider the potential impacts on agriculture due to climate change. For some of the factors of change we used Shared Socioeconomic Pathways (SSPs), developed partly by IIASA researchers, as an envelope of possibilities for future changes, because the SSPs are also socioeconomic scenarios that have considered many dimensions of change to look at the challenges the world may face in mitigating and adapting to a changing climate.

GLOBIOM, as a global model, covers future development not only for the ECOWAS region but also for the rest of the word, providing insights to how the region will be affected by forces outside its control, such as global markets and climate change, which can have profound effects on regional outcomes. We like to call this “globally consistent regional scenarios”.

After running the model we examined the results, such as agricultural area expansion and food availability, through the lens of the scenario narratives. Once the scenarios from our model results represent the future worlds the stakeholders envision we use the full scenarios (narratives and quantitative model results) with policymakers as a testing ground for potential policies, such as those used in the Burkina Faso workshop. Presenting modeling results can be challenging, but we have found ways to present engaging and informative quantitative scenarios, by focusing on the most useful information policymakers want to see for each scenario: regional socioeconomic growth and food security, development of crop and livestock sector under climate change, and changes in land use and deforestation. With successes like the workshop in Burkina Faso, where our scenarios, developed by local stakeholders and quantified by models, were well-received and useful for redeveloping the country’s PNSR as well as regional research objectives of the CGIAR, we see an example of how the IIASA goal of moving science into policy is being achieved.

References:

Havlík, Petr, Hugo Valin, Mario Herrero, Michael Obersteiner, Erwin Schmid, Mariana C Rufino, Aline Mosnier, et al. 2014. “Climate Change Mitigation through Livestock System Transitions.” Proceedings of the National Academy of Sciences of the United States of America 111 (10) (March 11): 3709–14. doi:10.1073/pnas.1308044111.

Leclère, D, P Havlík, S Fuss, E Schmid, A Mosnier, B Walsh, H Valin, M Herrero, N Khabarov, and M Obersteiner. 2014. “Climate Change Induced Transformations of Agricultural Systems: Insights from a Global Model.” Environmental Research Letters 9 (12) (December 1): 124018. doi:10.1088/1748-9326/9/12/124018. http://stacks.iop.org/1748-9326/9/i=12/a=124018?key=crossref.ede85e60c69b514efa057794c8e42d9c.

Müller, Christoph, and Richard D. Robertson. 2014. “Projecting Future Crop Productivity for Global Economic Modeling.” Agricultural Economics 45 (1) (January 10): 37–50. doi:10.1111/agec.12088. http://doi.wiley.com/10.1111/agec.12088.

Palazzo, Amanda, Joost Vervoort, Petr Havlik, Daniel Mason-D’Croz, and S Islam. 2014. “Simulating Stakeholder-Driven Food and Climate Scenarios for Policy Development in Africa, Asia and Latin America: A Multi-Regional Synthesis.” Copenhagen, Denmark.

Rosegrant, Mark W, and IMPACT development Team. 2012. “International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT) Model Description.”

Vervoort, J.M., A. Palazzo, D. Mason-D’Croz, P.J. Ericksen, P.K. Thornton, P. Kristjanson, W. Förch, et al. 2013. “The Future of Food Security, Environments and Livelihoods in Eastern Africa: Four Socio-Economic Scenarios.” 63.

Vervoort, Joost M., Philip K. Thornton, Patti Kristjanson, Wiebke Förch, Polly J. Ericksen, Kasper Kok, John S.I. Ingram, et al. 2014. “Challenges to Scenario-Guided Adaptive Action on Food Security under Climate Change.” Global Environmental Change 28 (March): 383–394. doi:10.1016/j.gloenvcha.2014.03.001. http://linkinghub.elsevier.com/retrieve/pii/S0959378014000387.

Note: This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.