Science without policy is science, but policy without science is gambling

By Géza Tóth, Sustainability Manager Tropical Oils, SBU Ferrero and IIASA alumnus

This famous sentence providing the catchy title for my blog and inspiration throughout my professional career comes from David Grey, who was one of my great mentors at IIASA.

During my seven years at the institute, I had the opportunity to work with several research programs where I had to find my way in various disciplines. Even though I was not the typical modeler, I was fortunate to work with patient tutors and great leaders who were supporting my development and triggering constructive thoughts. I was eager to learn about the crosscutting nature of global challenges and transversal opportunities. As a natural consequence, I found myself migrating between many IIASA programs and roles, constantly on the lookout for new challenges.

I completed a multidisciplinary PhD alongside my regular work at IIASA and changed titles and topics several times. I was into regional development and sustainability dynamics of post-war geographies where you cannot omit any influencing factors, whether it be political, environmental, or socioeconomic in nature. As I look back, I believe my overall results would not be complete without the flexibility and inclusiveness that I had the privilege of experiencing at IIASA.

When I moved into the food industry, I realized that everything I had learnt at IIASA, especially the systems thinking, come in handy when tackling the complex sustainability problems the industry faces. I have always liked connecting dots and fostering collaboration. While it is difficult to pitch policy-relevant research results, I believe there is a clear business case in bringing science and industry closer together.

© Nolimit46 | Dreamstime.com

Our global food supply chains are increasingly untraceable and so we have to connect a multitude of dots. Yet, industry is a very complex animal, driven by powerful shareholder corporations with a clear business agenda. IIASA can predict futures of our declining resources, influencing social aspects, even costs and required investments of businesses. Nevertheless, transforming industry does not depend on scientific facts and publications alone. What we need is to be able to translate scientific findings into innovations that will break current business rules or even disrupt them.

I feel that one of the biggest challenges of industry is to hear and understand the voice of science. Trading is a straightforward business where sustainability can be managed by compliance. As part of my responsibility of managing palm oil supply chain sustainability at Ferrero, I learned that in consumer goods manufacturing, consumers are the main drivers for Corporate Social Responsibility actions and their behavior and consumption patterns are changing.

Severe environmental destruction and unethical labor issues heavily affect the palm oil sector. The production and trade of agricultural commodities follow the rapidly increasing demand for food but, ironically, the amount of food waste and number of hungry people is also tipping. While European policymakers send contradicting messages about whether to eat palm oil or burn it in car engines, the destruction of ancient forests has reached unprecedented levels. Time is of the essence and science must have its voice heard in the language of industry, politicians and consumers. We cannot afford to work in silos. It is time to collaborate and finally link science with people.

The IIASA Young Scientists Summer Program (YSSP) is a unique platform and I am convinced that the positive impact it creates is enormous. Although I was never officially part of the YSSP, I interacted with the participants every year and felt like one of them. Highly skilled young thinkers come together from all around the world, influence and learn from each other under IIASA mentorship and are bound to end up in various disciplines and roles out there. They will surely know how to translate applied science into the right language and channel.

As a family-owned global company, Ferrero is one of the few businesses that is able to make long-term systematic plans and has a successful history of working with a forward looking and constructive vision. Its potential to be a lighthouse model for the industry is enormous and thus its responsibility too. It should therefore come as no surprise that supporting the YSSP program was a natural first step in Ferrero’s collaboration with IIASA.

It is not easy to explain what IIASA does and how it is relevant for the industry. It is equally difficult to illustrate it with good examples. IIASA scientists have however been helping me a lot to identify appropriate channels. I hope there will be more outputs from IIASA in the future that translate science into the business case allowing us in the industry sector to connect more dots.

Note: This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.

Creativity: a change in thinking for a sustainable future

Laura Mononen in Passage

Laura Mononen experiencing a creative ”world flow” in the art installation ‘Passage’ by Matej Kren in Bratislava | © Kati Niiles


By Sandra Ortellado, IIASA 2018 Science Communication Fellow

If fashion is the science of appearances, what can beauty and aesthetics tell us about the way we perceive the world, and how it influences us in turn?

From cognitive science research, we know that aesthetics not only influence superficial appearances, but also the deeper ways we think and experience. So, too, do all kinds of creative thinking create change in the same way: as our perceptions of the world around us changes, the world we create changes with them.

From the merchandizing shelves of H&M and Vero Moda to doctoral research at the Faculty of Information Technology at the University of Jyväskylä, Finland, 2018 YSSP participant Laura Mononen has seen product delivery from all angles. Whether dealing with commercialized goods or intellectual knowledge, Mononen knows that creativity is all about a change in thinking, and changing thinking is all about product delivery.

“During my career in the fashion and clothing industry, I saw the different levels of production when we sent designs to factories, received clothing back, and then persuaded customers to buy them. It was all happening very effectively,” says Mononen.

But Mononen saw potential for product delivery beyond selling people things they don’t need. She wanted to transfer the efficiency of the fashion world in creating changes in thinking to the efforts to build a sustainable world.

“Entrepreneurs make change with products and companies, fashion change trends and sell them. I’m really interested in applying this kind of change to science policy and communication,” says Mononen. “We treat these fields as though they are completely different, but the thing that is common is humans and their thinking and behaving.”

Often, change must happen in our thinking first before we can act. That’s why Mononen is getting her doctorate in cognitive science. Her YSSP project involved heavy analysis of systems theories of creativity to find patterns in the way we think about creativity, which has been constantly changing over time.

In the past, creativity was seen as an ability that was characteristic of only certain very gifted individuals. The research focused on traits and psychological factors. Today, the thinking on creativity has shifted towards a more holistic view, incorporating interactions and relationships between larger systems. Instead of being viewed as a lightning bolt of inspiration, creativity is now seen as more of a gradual process.

New understandings of creativity also call on us to embrace paradoxes and chaos, see ourselves as part of nature rather than separate from it, experience the world through aesthetics, pay careful attention to our perception and how we communicate it, and transmit culture to the next generation.

Perhaps most importantly, Mononen found in her research that the understanding of creativity has changed to be seen as part of a process of self-creation as well as co-creation.

“The way we see creativity also influences ourselves. For example if I ask someone if they are creative, it’s the way they see themselves that influences how creative they are,” says Mononen. “I have found that it’s more crucial to us than I thought, creativity is everywhere and it’s everyday and we are sharing our creativity with others who are using that to do something themselves and so on.”

This means on the one hand that we use our creativity to decide who we are and how we see the world around us for ourselves. But it also means that the outcomes and benefits of creativity are now intended for society as a whole rather than purely for individuals, as it was in the past. It may sound like another paradox, but being able to embrace ambiguity and complexity and take charge of our role in a larger system is important for creating a sustainable future.

“From the IIASA perspective this finding brings hope because the more people see themselves as part of systems of creating things, the more we can encourage sustainable thinking, since nature is a part of the resources we use to create,” says Mononen.

Mononen says a systems understanding of creativity is especially important for people in leadership positions. If a large institution needs new and innovative solutions and technology, but doesn’t have the thinking that values and promotes creativity, then the cooperative, open-minded process of building is stifled.

Working in both the fashion industry and academic research, Mononen has encountered narrow-minded attitudes towards art and science firsthand.

“Communicating your research is very difficult coming from my background, because you don’t know how the other person is interpreting what you say,” says Mononen. “People have different ideas of what fashion and aesthetics are, how important they are and what they do. Additionally, scientific concepts are used differently in different fields.”

“We are often thinking that once we get information out there, then people will understand, but there are much more complex things going on to make change and create influence in settings that combine several different fields.” says Mononen.

For Mononen, the biggest lesson is that creativity can enhance the efforts of science towards a sustainable world simply by encouraging us to be aware of our own thinking, how it differs from that of others, and how it affects all of us.

“When you become more aware of your ways of thinking, you become more effective at communicating,” says Mononen. “It’s not always that way and it’s very challenging, but that’s what the research on creativity from a systems perspective is saying.”

Volunteering for our climate – An interview with YSSP participant Yuping Bai

by Melina Filzinger, IIASA Science Communication Fellow

Yuping Bai is a participant of the IIASA Young Scientists Summer Program (YSSP) and a first year PhD candidate at the Chinese Academy of Sciences’ Institute of Geographic Sciences and Natural Resources Research. She is working with the Intergovernmental Panel on Climate Change (IPCC), the leading international body for the assessment of climate change, as a chapter scientist for their Special Report on Climate Change and Land. I recently had the chance to talk to her about her engagement as a chapter scientist.

© Yuping Bai

What is the aim of the IPCC special report on climate change and land?

Compared to the IPCC comprehensive assessment reports, this special report really focuses in depth on the linkages and inter-relationship between climate change, land use, and food security. It aims to propose sustainable land-based solutions towards climate change mitigation and adaptation efforts. We all know that climate change is an important issue and the connections between climate change and land use change are extremely complex. The report will include many different topics like land degradation, desertification, greenhouse gas fluxes and food security. Understanding the links between these diverse issues is particularly important for informing decision making by governments, as well as private sectors, to address challenges in land use change and governance.

What is a chapter scientist?

Chapter scientists are early-career researchers that support the development process of the individual report chapters. IPCC asked for volunteers who are required to dedicate at least one-third full time equivalent over a 2.5-year period while working from their home institutions. The chapter scientists were chosen based on expertise, motivation, time availability, and experience in working in a multi-cultural context. There are ten chapter scientists in total working on the report, one or two for each chapter.

How do you contribute to the report?

I am assigned to Chapter 1, which provides the framing and context for the report. Part of my job has been organizational tasks, for example managing our referencing system, scheduling online meetings, tracking down key literature, assisting in the design and development of figures and tables, and assisting in compiling, revising, and organizing chapter contributions. On the other hand, I have also been involved in  developing the overall concept of our chapter and can voice my ideas and express my views. Chapter 1 raises the key issues related to land use and sustainable land management for climate adaptation and climate resilience, and provides the concepts and definitions needed to understand the rest of the report.

In fact, many of these topics are closely related to my PhD research and my YSSP project. The YSSP experience significantly broadened my knowledge on climate change and land related topics, and at the same time deepened my understanding of the cross-scale complexity of the issues. After three months, I feel that I’m much better equipped to contribute to the future work for the chapter.

Why did you decide to volunteer so much of your time?

As a chapter scientist I have the chance to participate in discussions on some of the most pressing and important issues in the world. I also have the unique possibility to work with some of the world leading scientists in their respective fields. Therefore, I think it’s an important opportunity to make contacts and to gain insight into the work of the IPCC.

What has your experience been so far?

I’m the youngest one of the chapter scientists, so I felt a bit overwhelmed at first, particularly as I was suddenly rubbing shoulders with some of the brightest, most established academics and researchers on the planet. In this first half year, I attended the second lead author meeting and have been involved in the first draft of the report. During busy periods leading up to key deadlines, such as the submission of the drafts, my hours peaked, and the pressure built. But don’t let this frighten you. It is possible to learn on the job! It helped that everyone made me feel so welcome and valued. I have definitely learned a lot. My research is very specialized, and my work with the IPCC has helped me gain a broader view on climate change and the problems that are connected to it.

Note: This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.

Climate systems science is personal and so are the risks

© Vadim Nefedoff | Shutterstock

 

By Sandra Ortellado, 2018 Science Communication Fellow

Around 8,000 kilometers away from Vienna, Austria, hundreds of Arctic coastal communities are at imminent risk from the melting ice and coastal erosion. Indigenous Arctic populations struggle with food insecurity every day, living off small fractions of what their catch would have been only a few years ago. Their culture and their way of life, so dependent on sea ice conditions, are melting away, along with the very root of the Arctic ecosystem.

However, construal level theory, a social psychological theory that describes the extent to which distant things become abstract concepts, tells us that 8,000 kilometers is just far enough for Arctic peoples to lose tangible existence in the minds of urban citizens. Unlike Arctic communities, who experience the direct effects of climate change at each meal, commercialized lower latitude societies don’t have to face the environmental consequences of choosing to drive to the grocery store instead of bike.

Nevertheless, those consequences are very real, even if the impacts on the Arctic and climate system don’t always catch our attention. Sea level will continue to rise for the next several hundred years—it takes 500 years for the deep ocean to adjust to changes at the surface.

On Friday, 22 July, former Chief Scientist of the UK Met Office Dame Julia Slingo and former Chair of the IIASA Council Peter Lemke joined us at IIASA for a joint lecture on climate risk in weather systems and polar regions. The lecture had one underlying theme: in order to make informed decisions on climate change, we need to embrace uncertainty with a broader understanding of what’s possible. That means that the far-away Arctic needs to be seen as nearby and relevant, and that climate change forecasts once seen as ‘uncertain,’ should instead be interpreted as ‘probable.’

“People are often confusing uncertainty with risk. If it’s uncertain they think they don’t really have to think about it. But there is a risk they take if they avoid things,” says Lemke. “a 40% chance could also mean a doubling of the risk, and a doubling of the risk is something that’s easily understood.”

“It’s a matter of how you communicate it,” says Lemke.

Perhaps Hollywood’s obsession with apocalyptic disaster narratives serves some kind of purpose after all—the stories seem outlandish, but films translate them into concepts we can understand and scenes we’re familiar with.  It’s hard to picture what it would be like to live in a world that is 2°C warmer, but thanks to Hollywood special effects, we can picture what it would be like if storms of epic proportions engulfed the Statue of Liberty in a gigantic tidal wave.

“We have get down to people’s personal experience. That’s why I’m so against the use of things like global mean temperature, because people can’t relate to that,” says Slingo. “I am very keen on using narrative, but based on science, so people have access to the evidence for why we have this story that we tell about how climate change could affect them personally.”

Of course, we can’t give Hollywood too much credit: these stories are dangerously lacking input from actual climate science. Nevertheless, armed with the forecasting tools and technologies that have advanced so much over the past decade or so, we can counter uncertainty and get a better understanding of the risks we face. For example, using improved computer models and satellites that determine the age and thickness of ice, we can determine the rates of receding ice, and how much that will affect sea level rise in coastal communities.

Likewise, social media makes it easy to transmit information rapidly to a large audience that might not have been reachable otherwise. Reaching people where they are is of paramount importance—while scientists can put painstaking effort into presenting the most accurate, unbiased account of probable risks, this is just one facet of any given decision. In the end, it is the public and the policymakers that represent them that must make the decision about what actions to take, based on a complete narrative that includes the socioeconomic and cultural factors involved.

“It’s all about dialogue at the end of the day. One of the things I learned as MET office chief scientist was that based on the evidence I was giving to government, you would think that the policy would be quite clear,” says Slingo. “But there are other aspects to take into consideration, such as unemployment or other policy implementation capacities and societal implications.”

That’s why Lemke and Slingo both make huge efforts to communicate with the public, especially with the impressionable, optimistic, social media savvy and politically mobilizing younger generations. From their interactions and outreach with the public, Lemke and Slingo know that once you put climate change in proximity and translate science into narratives that are relevant to the lives of individual citizens, the public does care about climate change. They want to know more, and they want to do something about it.

When it comes to environmental advocacy, education is power, especially when it translates the high-end risk probabilities of climate science into relatable narratives. For Lemke and Slingo, that creates a huge opportunity for scientists of all backgrounds.

“I don’t think climate change has to be depressing. It’s a fantastic opportunity for a whole generation of scientists and engineers to tackle a great problem,” says Slingo. “I actually have the confidence that we’ll solve it.”

The philosophy of climate change – An interview with YSSP participant Kian Mintz-Woo

by Melina Filzinger, IIASA Science Communication Fellow

Kian Mintz-Woo is a moral philosopher working in the field of climate ethics. He obtained his PhD from the University of Graz and is spending the summer at IIASA as a participant of the Young Scientists Summer Program (YSSP). I recently had the opportunity to talk to him about his work.

Kian Mintz-Woo, © Kedar Kulkarni | IIASA

How do you feel about joining YSSP as a philosopher?

I know that it is extremely unusual for a philosopher to join YSSP, and I’m really happy to be here. It is very stimulating to be surrounded by people with a different point of view. I appreciate that people are asking me about what philosophers do, or they’ve come across a philosophical text and want to know my opinion. It is extremely valuable to me to talk about my discipline to interested people.

You started out studying logic – how did you become interested in climate change?

I used to do research on abstract and systematic areas of mainstream philosophy. I enjoyed it, but was also interested in social issues. I think climate change is particularly important, because unlike most issues we have a very short time window to deal with it. Of course there are a lot of things we have to change in our society, but climate change is definitely an issue that can’t be put off anymore.

When I started my BPhil in Oxford, I initially worked on similarly abstract topics, but then I met John Broome, an expert in climate ethics. Doing a project with him was both a once-in-a -lifetime-opportunity and a possibility to marry my theoretical training with some of my real-world interests. What I am doing now is about as applied as philosophy can get—I’m on the edge of what some people would even call philosophy—and it is great fun!

What is your project about?

When talking about climate change, we often discuss two things: ways to limit the temperature increase on earth (mitigation), and ways to adapt to the changing conditions that accompany climate change (adaptation). However, we also increasingly have to consider effects of climate change that go beyond what we are able or willing to adapt to. We call this area of research and policy “Loss and Damage”.

We have to think about who is responsible for the Loss and Damage-related burdens that we are and will be facing. In my project, I argue that, conceptually, there is a strong link between historical responsibility for emissions of greenhouse gases and Loss and Damage. This is very relevant for policy as well: We don’t want the farmer who can no longer support himself because changing rain patterns have reduced his crop yield, or the small island nation that might be flooded in the future, to bear the risks related to climate change alone. However, the instruments that can help spread this risk globally require financial burdens.

Most of the discussions about who should be the bearers of these burdens have been in terms of nations, but an interesting paper from 2014 suggests that we should rethink that approach. The main findings of this paper are that only 90 companies producing oil, natural gas, coal, and cement were the source of 63% of historical CO2 emissions. As the number of these so-called carbon majors is so surprisingly small, considering them instead of nations in the discussions about funding might be a valid alternative.

Is it relevant if the effects of these emissions were known at the time?

That is an important question and I think that it should matter. The data we have goes back to 1854, so I feel that at least some of the time the emissions should be considered under the heading of excusable ignorance. We could start holding the carbon majors responsible after a certain year, maybe around 1980 or 1990, and part of my research is finding out how the selection of the carbon majors depends on the chosen point.

How does your work relate to the research going on in the IIASA RISK Program?

It is great being in the RISK group. My input as a philosopher is making conceptual suggestions and bringing in fairly blue-sky policy solutions. What I am getting from my supervisors are real-world implications of these suggestions, such as risk instruments that might be relevant for the implementation of my ideas. So together, we are aiming to make these abstract ideas policy-relevant.

Why should we apply philosophical concepts to problems like climate change?

Science can help us figure out which pathways are available, but scientists are often not very well trained in evaluating those beyond their economic-technical approach. Moral philosophers can bring in new perspectives for evaluating these options.

What I am doing at IIASA however, is taking a step back from the research that is going on in order to ask fundamental questions. I want to provide ambitious proposals, and find out what they would push us towards if we were trying to implement them. This often requires bringing concepts and results together from different areas of research to obtain a broader view on the problem.

What do you want to achieve by the end of the summer?

I hope to achieve a policy proposal that is ambitious but defensible. I want to develop a clear argument as to why the carbon majors are more responsible for Loss and Damage than for mitigation and adaptation. I think this approach is both new and quite important, especially for many developing countries and small island states.

Apart from your research project, what are you looking forward to most this summer?

I am getting married this month, so this is an especially exciting and busy summer for me!

 

Note: This article gives the views of the authors, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.

International research organizations as a source of societal development and peace

By Melina Filzinger, IIASA Science Communication Fellow

In his lecture at IIASA, Maurizio Bona, senior advisor for relations with parliaments and science for policy, and senior advisor on knowledge transfer at the European Organization for Nuclear Research (CERN)  discussed the question “Science and diplomacy–two different worlds?”, focusing on the dual role of CERN as both a research laboratory and an intergovernmental institution.

Maurizio Bona ©CERN

According to Bona, international research centers like CERN and IIASA foster international and intercultural communication by bringing together people with different backgrounds and ideas to work on a common goal. In this context, these organizations act as communication channels where science is used as a universal language.

CERN was established in 1953 to carry out research on particle physics, but also to reunite a Europe that was divided after World War II, and to re-open the dialogue between European countries and beyond. While CERN was not involved in politics directly, an important point of the lecture was that science can provide a neutral field for dialogue and connect people that would not meet otherwise. In this way, international research institutes can contribute to science diplomacy in a very indirect and informal way.

IIASA was founded in 1972 to find solutions to global problems, and with a similar goal of using scientific cooperation to build bridges across the Cold War divide. Despite the vastly different research done at CERN and IIASA, both organizations have roots in science diplomacy that stem from the fact that today’s problems, regardless of whether they are fundamental or applied in nature, are often too complex to be solved by one country or discipline alone.

Even though CERN is a European organization, it attracts researchers from all over the world, like IIASA. In January 2018, 41% of scientific users (researchers using CERN facilities that are not paid by CERN) were from non-member countries and contributed their expertise as well as research equipment. In order to ensure that scientific advancement and not national interests are the basis of the research objectives at CERN, it is based on a simple but strong Convention that excludes military applications and ensures transparency. Additionally, CERN stays away from political affiliations.

Based on the success of the CERN model, the first particle accelerator in the Middle East, Synchrotron-Light for Experimental Science and Applications in the Middle East (SESAME), was established in 2004. Its organizational structure is based largely on that of CERN, and it was thought out explicitly as a way to bring together conflicting Middle Eastern countries, while at the same time advancing science. SESAME’s member states are Cyprus, Egypt, Iran, Israel, Jordan, Pakistan, Palestine, and Turkey and the facility has been open to scientific users from the Middle East and beyond since 2017.

Beyond fostering international and intercultural communication by bringing together people with different backgrounds and ideas to work on a common goal, international research institutes can also influence policy more directly. For example, CERN has been an observing member at the UN general assembly since 2012 and has had an influence on shaping the UN 2030 Agenda for Sustainable Development, advocating for the importance of education and fundamental research.

IIASA goes one step further, explicitly aiming to shape policies and help politicians make informed, evidence-based decisions. IIASA research has for example shaped European air pollution policy and has led to real improvements in the sustainable management of scarce resources in a number of countries. The institute’s independence and political neutrality are key for its credibility as an adviser to policy makers. IIASA is nongovernmental and is instead sponsored by its 23 national member organizations. Today IIASA member countries make up 71% of the global economy and 63% of the global population, making IIASA particularly well-suited to address global challenges.

Maurizio Bona closed his lecture with the following quote by Daniel Barenboim, a world-famous pianist and conductor:

Let me tell you something: This is not going to bring peace. What it can bring is understanding, the patience, the courage, and the curiosity to listen to the narrative of the other.            

Daniel Barenboim, Ramallah concert, August 2005.

This quote was originally meant to be understood in the context of international collaboration in music, but is also applicable to science, and in fact to any endeavor that brings together people from different backgrounds to work towards a common goal.

The lecture left the audience with some open questions, like how to measure the impact of science on society, or how involved science should be in diplomacy. Some of these questions were picked up on in a lively discussion after the talk. For now, I think it is fair to conclude that the histories of both CERN and IIASA show that international research institutes can have a positive impact on society while remaining politically neutral and unbiased in their scientific goals.

Note: This article gives the views of the authors, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.