South-south cooperation for healthy, productive and sustainably managed forests

by Stephan Pietsch, IIASA Ecosystems Services and Management Program

A failed north-south cooperation. Photo Credit: Stephan Pietsch

A solar village project in Africa hit hard times when spare parts were not available  to repair the solar cells. Photo Credit: Stephan Pietsch

When we hear about cooperative efforts to preserve forests in the Southern Hemisphere, they are usually between wealthy countries in the Northern Hemisphere, which provide funding or expertise, and developing countries in the Southern Hemisphere. “Northern” solutions, however, may fail under “Southern” conditions, sometimes due to lack of access to equipment, spare parts, or maintenance expertise. Cooperation between countries within the Southern Hemisphere, or “South-South cooperation” is therefore becoming increasingly important because such cooperation allow countries to profit from others’ experiences.

That is why I recently co-organized a side event on the topic at the FAO XIV World Forestry Congress in Durban South Africa last month. The event brought together experts in the field to discuss recent successes and the current limitations of South-South cooperation in forestry, provide a forum for exchange among ongoing cooperation projects in the training, education, science, and policy sectors, and promote enhanced South-South cooperation within forestry. An excellent example of one of these success stories are the horticultural practices for agroforestry developed at the World Agroforestry Center (ICRAF), which operate without the need for sterile working environments.

The event focused not only on the role of Southern Hemisphere cooperation within the forestry sector, but also stressed interconnected issues like food security, climate change mitigation and economic development. As such, cooperation in forestry in the Southern Hemisphere may become a key vehicle for socioeconomic development and food security by integration of forests and other land uses.

Trucks carrying logs in Gunung Lumut, East Kalimantan, Indonesia.   Photo by Jan van der Ploeg for Center for International Forestry Research (CIFOR).

Trucks carrying logs in Gunung Lumut, East Kalimantan, Indonesia.
Photo by Jan van der Ploeg for Center for International Forestry Research (CIFOR).

What makes such cooperation successful? The participants identified efforts in capacity building such as training forest-dependent people in rural communities, but also establishing value chains and marketing expertise including local businesses and policymakers to jointly cooperate for improved decision making. Using South-South cooperation to foster product innovation and sustainable trade provides us with a promising pathway for building resilience with forests: Resilience in an ecological sense, but equally well in an economic, sociological and political sense in order to ensure sustainable futures for the global South. The side event promoted such solutions to increase the visibility and impact of ongoing South-South cooperation at the local, regional, continental and global level.


Photo credit: Stephan Pietsch

Event Information

World Forestry Congress – Side Event
The way forward via integrated South-South cooperation” with Dr. Tachrir Fathoni (Indonesia), Dr. Zacharie Tchoundjeu (Cameroon), Dr. Alexandre X. Ywata de Carvalho (Brazil), Dr. Coert Galdenhuys (South Africa) and Dr. Stephan A. Pietsch (Austria). More information.

The event was sponsored by the REDD-PAC project and is part of the IIASA Tropical Flagship Initiative.

Note: This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.

Interview: Aquatic invaders and ecological networks

Danielle Haak, who recently completed her PhD from the Nebraska Cooperative Fish and Wildlife Research Unit and the School of Natural Resources at the University of Nebraska-Lincoln, has won the annual Peccei Award for her outstanding research as part of the 2014 Young Scientists Summer Program (YSSP) in IIASA’s Advanced Systems Analysis research program.

Haak_postYSSP_IcelandCould you tell me a bit about yourself? Where are you from and what do you study?
I grew up in Milwaukee, Wisconsin (USA), and it was there I fell in love with the natural world. As a kid, my family and I spent weekends boating on Lake Michigan, and I’ve always been fascinated by lakes and the hidden world beneath the water’s surface. As an undergraduate, I spent a few summers in northern Wisconsin at a limnology research station, and this is where I realized I could actually make a career out of this fascination! I went on to get a BSc in Wildlife Ecology, a MSc in Biological Sciences, and I recently defended my PhD dissertation that focused on the energetics and habitat requirements of the invasive freshwater Chinese mystery snail. In general, I’m interested in aquatic invasive species and how their introduction affects ecosystem structure, functioning, and resilience.

How did you get interested in this subject?
I was drawn to aquatic invasive species during my undergraduate research. My first independent research project was on invasive crayfish in a northern Wisconsin lake; in addition to out-competing the native crayfish population, the invasive species suffered from a fungal disease outbreak, and we wanted to understand its prevalence throughout the lake. I also worked as a technician on a whole-lake study researching the efficacy of manual removal of an invasive crayfish species from another lake. It was a long-term project that successfully reduced the invasive rusty crayfish population enough that the native crayfish population was able to recover, and the entire lake underwent a drastic physical change as a result. These large-scale dynamics have always been appealing to me, and I knew it was something I wanted to pursue in my career. When I started my PhD at the University of Nebraska-Lincoln, our research group had just started a number of side projects on the Chinese mystery snail, and there was an obvious gap in our scientific understanding of the species; thus, it made sense to take advantage of this opportunity!

What was the question you were trying to answer in your YSSP research project?
My YSSP project built upon my dissertation topic but went in a slightly different direction. My YSSP supervisor, Dr. Brian Fath, and I wanted to utilize the already-established methods of social and ecological network analyses, but in a way that hadn’t been done before. Ultimately, we had two main questions. First, we wanted to investigate how the social dynamics of ecosystems can be integrated into ecological network analysis. And second, we wanted to use network analysis to analyze the ecological effects and movement of the Chinese mystery snail in the southeast region of Nebraska.

What did you find?
Because there were a few parts to this research, we had a number of different results. First, we were able to create directed networks of how anglers and boaters moved among a network of flood-control reservoirs. We also developed ecological networks specific to each of the 19 reservoirs included in our study. Both of these findings were relevant by themselves, but the cool part was how we combined them. We adapted the framework of infectious disease network modeling to simulate what would happen within the first 25 years after a hypothetical introduction. The human movements connecting reservoirs were equivalent to a disease’s transmission rate, and the individual population growth of the snail within each reservoir after an introduction was like a disease’s incubation time leading up to a threshold where that reservoir then became contagious. We started with 5 infected and contagious reservoirs, and after 25 years only 5 of the 19 reservoirs did not have the Chinese mystery snail in it. Finally, we identified three of the already-infected reservoirs where preventing snails from being transported out of them would be most critical as well as two susceptible reservoirs where preventing introduction of the snails would be most beneficial.

Chinese Mystery Snail. Photo: Wisconsin Department of Natural Resources, Doug Jensen

Chinese Mystery Snail. Photo: Wisconsin Department of Natural Resources, Doug Jensen

Why is this research important for policy or society?
Our preliminary results demonstrated that social and ecological network models can be used in tandem, which has the potential to address a number of complex policy and management issues. Additionally, being able to prioritize reservoirs based on how effective prevention efforts would be allows managers to focus their limited resources in places they would get the best return on their investment. I believe there is also a great deal of potential in using this combined model approach to assess the spread of other aquatic invasive species of concern as well as other types of disturbances.  

How are you planning to continue this research when you return to IIASA?
I would like to work with Dr. Fath on refining some of my individual ecological network models, and possibly incorporating some of the additional social data that’s available to us. We also discussed possibly using the approach to look at other questions related to aquatic invasive species, but in different geographical regions and possibly with different software. One of the best parts of this project was coming up with so many questions on where we could go next, and I really enjoyed working with Dr. Fath and gaining a new perspective on the questions that interest me.

How did your time at IIASA affect your PhD research?
My time at IIASA refreshed my love of the scientific process, and I loved the flexibility in adjusting my project as I learned more and developed new questions. Ultimately, I ended up with an additional chapter for my dissertation and came home with a mostly-completed draft.

What was your favorite aspect of the YSSP and IIASA?
I loved so much about YSSP and working at IIASA, but the best part was probably the ability to meet other brilliant scientists and students from around the world. In addition to thought-provoking discussions on science and research, we also had some incredible discussions on life in other countries with drastically different cultures. The other students made the entire summer even better, and I’m so happy I was able to participate in such an incredible experience. IIASA has a truly unique work environment, and everyone made us feel right at home. It really was a dream come true, and I’m so excited about the opportunity to return and pick up where I left off. The only thing missing will be my fellow YSSPers! I wish we could all come back every summer!

What was your favorite moment of the summer?
I think my favorite experience was the end of summer workshop and dinner and dance that followed. I was so impressed during the initial presentations and it was great to hear about all the progress that was made in the short three months. Celebrating this progress with a night of dancing and dining was just the perfect ending to a great summer. It was a bittersweet farewell, but I think it cemented our friendships and was a great capstone to an already dreamlike experience!

Photo credit: Danielle Haak

Danielle Haak (right) and fellow YSSPer Adriana Reyes, at the end-of-summer awards ceremony.

Note: This article gives the views of the interviewee, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.

Six questions for Simon Levin

Princeton University Professor Simon Levin—IIASA council chair 2003-2008–has won numerous awards for his interdisciplinary research in environmental sciences, economics, and evolutionary biology. On 10 November, Levin gave a public lecture at IIASA, at which he was named an IIASA Distinguished Visiting Fellow

Simon Levin speaks at the fifth OeAW/IIASA Public Lecture in Laxenburg on 10 November. Credit: IIASA/Matthias Silveri

Simon Levin speaks at the fifth IIASA/OeAW Public Lecture in Laxenburg on 10 November. Credit: IIASA/Matthias Silveri

IIASA: Your research explores issues such as environmental degradation, human inequality, and climate change. Why are global problems such as these so difficult to address?
Simon Levin: To a large extent, many of these are problems not well addressed in market-based systems. The problem is that for public goods and common-pool resources, the incentives for individual actions are misaligned with the interests of society.   Equity gaps and discounting of the future add to these problems, and make it difficult to achieve consensus, especially at global levels for which the feedback loops associated with individual and local actions are weak.

What kinds of approaches are needed to understand such complex, global environmental and social problems?
Certainly we need systems approaches to deal with the linkages and scaling problems within these complex adaptive systems.  We need interdisciplinarity, and we need more study of how to achieve cooperation at national and international levels.  These are all problems central to the agenda of IIASA.

What new insights has your research brought to these problems?
I have long been impressed with the power of using what we learn in one set of systems to address analogous problems in others, and have benefited greatly from what I have learned from colleagues in other disciplines.   I feel that I have been able to get a great deal of mileage out of translating and adapting those lessons to environmental problems, and feel that my ecological and evolutionary perspective in particular, and what I have learned from how evolution has dealt with challenges, has allowed me to bring useful perspectives to the management of coupled biological and socioeconomic systems.

How can models of complex environmental systems inform our understanding of human systems such as the economy?
We learn from such systems what makes them robust, and what makes them vulnerable to collapse; the importance of diversity, redundancy, and modularity to the ability of systems to adapt in variable environments; the importance of flexible and adaptive governance.

Credit: PhotonQ via Flickr

“We learn from [environmental] systems what makes them robust, and what makes them vulnerable to collapse” Credit: PhotonQ via Flickr

What can studies of cooperation in nature tell us about cooperation in human societies?
Cooperation in nature is strongest in small groups; and as those groups become larger, agreements, social norms and institutions become increasingly important.  Nobel Prize winner  Elinor Ostrom led in adapting those principles to the management of small societies, and I agree with her on the importance of polycentricity—building  up from smaller agreements—in addressing global environmental problems.

How can we apply such findings to find practical solutions for the problems we face?
We need research, but we also need partners outside of science.  Increasingly, business leaders have looked to biological systems for models as to how they can deal with challenges; we now similarly need to partner with government leaders if we are to address the grand challenges in achieving a sustainable future.

Watch the full lecture

Mapping the global palm oil boom

By Johannes Pirker and Aline Mosnier, IIASA Ecosystems Services and Management Research Program

In the late 2000s, Palm oil became a major target of environmental NGO’s working to save tropical forests. Bleak images of recently cleared forest sites left no doubt about the harmful impact of the commodity which today is omnipresent in our food—palm oil today is used in many everyday products such as chocolate bars, shampoo, and margarine.  Campaigning against palm oil is a safe bet for NGO’s; it has become the North Korea among the vegetable oils.

The facts are clear: oil palm cultivation has expanded tremendously in recent years. Indonesia and Malaysia were and continue to be the epicenter of this expansion. In these two countries, new plantations have led to at least 3.7 million hectares of forest loss during the last 20 years, an area bigger than Belgium. This deforestation threatens not only animal and plant species, but  expansion of palm oil plantations is increasingly occurring into carbon-rich peat soils, leading  to  the release of tremendous amounts of climate-warming  CO2  into the atmosphere.

Palm oil fruit. Photo Credit: Aline Soterroni

Palm oil mill of CDC in the South-West province in Cameroon, taken by Aline Soterroni, a 2010 IIASA YSSP participant and collaborator on the REDD-PAC project.  Photo Credit: Aline Soterroni

On the other hand, even environmental NGOs cannot deny that the palm-oil boom has brought major benefits to the economies of producer countries. In Indonesia, the sector is estimated to employ on average 0.4 persons per hectare – at  least 3.2 million jobs in a country where about 30 million people live in poverty. Unskilled slave labor? Well, no. Almost half of the plantations in the country are owned and managed by smallholders. In Thailand the share is as high as three quarters of the total plantation area.

Demand for palm oil remains high and there is now evidence that the palm oil boom might spill over to Central and Western Africa, where about 800,000 hectares of plantation concession have been granted to companies in recent years. Latin American countries too see the opportunity to benefit from the boom, such as Brazil, which has recently included oil palm in its reforestation plans, bolstered by a generous subsidy scheme for smallholders. So is the way inevitably paved for the palm oil industry to embark on a new round of forest-destroying plantation expansion?

Land use planning as a way forward
In many countries land is available – mainly degraded forests and grassland – to satisfy the future demand for palm oil in a less damaging way. Earmarking the right sites for palm plantations requires a good deal of capacity and knowledge by local authorities about where natural conditions are suitable for oil palm, which environmental and social safeguards need to be considered and at which place – a land use planning process.

Global palm oil suitability map

The map above shows where palm oil production is possible on the globe when taking into account climate, soil, and topography features.

The first step toward more sustainable oil production is a map indicating where bio-physical conditions are suitable for oil palm cultivation. To that end, we constructed a global bio-physical suitability map, building on climate, soil and topography data at the resolution of 1 km. The map reveals that in fact the Amazon basin – the better part of it is located in Brazil – harbors by far the biggest stretch of suitable land, followed by the Democratic Republic of the Congo (DRC) and Indonesia.

IIASA supports the MOABI platform, a collaborative mapping initiative that aims to increase transparency and accountability on resource issues in DRC. Our oil palm suitability map will help to inform this process by providing insight to the sustainability of the expected expansion of oil palm in DRC in the coming years.

This map shows areas that are potentially suitable for oil palm cultivation in the Democratic Republic of the Congo.

This map shows areas that are potentially suitable for oil palm cultivation in the Democratic Republic of the Congo. The map was developed from our data, and made interactive and zoomable by our partners the Moabi Project.

Biophysical suitability is not all
However, if and where plantations will start to appear will depend on many factors, most of which are economic :

  • Availability, productivity and costs of land and labor
  • The institutional set-up and support for the sector
  • Accessibility to refinery plants and markets is a key determinant for oil palm plantations profitability

In order to address these issues, an economic model such as IIASA’s Global Biosphere Management Model (GLOBIOM)  model can be deployed to gain insights in the likely development of the sector, help land use planning and explicitly show the trade-off between economic development and biodiversity protection.

Note: This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.

Beyond sharing Earth observations

By Linda See and Ian McCallum, IIASA Ecosystems Services and Management Program, Earth Observation Team

Land cover is of fundamental importance for environmental research. It  serves as critical baseline information for many large-scale models, for example in developing future scenarios of land use and climate change. However, current land cover products are not accurate enough for many applications and to improve them we need better and more accessible validation data. We recently argued this point in a Nature correspondence, and here we take the opportunity to expand on our brief letter.

In the last decade, multiple global land cover data products have been developed. But when these products are compared, there are significant amounts of spatial disagreement across land cover types. Where one map shows cropland, another might show forest domains. These discrepancies persist even when you take differences in the legend definitions into account. The reasons for this disagreement include the use of different satellite sensors, different classification methodologies, and the lack of sufficient data from the ground, which are needed to train, calibrate, and validate land cover maps.

An artist's illustration of the NASA Landsat Data Continuity Mission spacecraft, one of the many satellites that collects data about Earth's surface. Credit: NASA/GSFC/Landsat

An artist’s illustration of the NASA Landsat Data Continuity Mission spacecraft, one of the many satellites that collects data about Earth’s surface. Credit: NASA/GSFC/Landsat

A recent Comment in Nature (Nature513, 30-31; 2014) argued that freely available satellite imagery will improve science and environmental-monitoring products. Although we fully agree that greater open access and sharing of satellite imagery is urgently needed, we believe that this plea neglects a crucial component of land cover generation: the data required to calibrate and validate these products.

At present, remotely sensed global land cover is not accurate enough for monitoring biodiversity loss and ecosystem dynamics or for many of the other applications for which baseline land cover and change over time are critical inputs. When Sentinel-2–a new Earth observation satellite to be launched in 2015 by the European Space Agency–comes online, it will be possible to produce land cover maps at a resolution of 10 meters.  Although this has incredible potential for society as a whole, these products will only be useful if they represent the land cover more accurately than the current products available. To improve accuracy, more calibration and validation data are required. Although more investment is clearly needed in ground-based measurements, there are other, complementary solutions to this problem.

Map showing disagreement between two different land cover maps. Credit:, Google Earth

Map showing cropland disagreement between two different land cover maps,  GlobCover and GLC2000: all colors represent disagreement. Credit:, Google Earth

Not only should governments and research institutes be urged to share imagery, they should also share their calibration and validation data. Some efforts have been made by the Global Observation for Forest Cover and Land Dynamics  (GOFC-GOLD) in this direction, but there is an incredible amount of data that remains locked within institutes and agencies. The atmospheric community shares their data much more readily than the Earth Observation (EO) community, even though we would only benefit by doing so.

Crowdsourcing of calibration and validation data also has real potential for vastly increasing the amount of data available to improve classification algorithms and the accuracy of land cover products. The IIASA Geo-Wiki project is one example of a growing community of crowdsourcing applications that aim to improve the mapping of the Earth’s surface.


New apps developed by IIASA’s Earth Observation Team aim to involve people around the world in on-the-ground data validation efforts.

Geo-Wiki is a platform which provides citizens with the means to engage in environmental monitoring of the earth by providing feedback on existing spatial information overlaid on satellite imagery or by contributing entirely new data. Data can be input via the traditional desktop platform or mobile devices, with campaigns and games used to incentivize input. Resulting data are available without restriction.

Another major research projects we are using to address many of these issues identified above is the ERC Project Crowdland .

More information

Note: This article gives the views of the authors, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.

Interview: Taking Geo-Wiki to the ground

Steffen Fritz has just been awarded an ERC Consolidator Grant to fund a research project on crowdsourcing and ground data collection on land-use and land cover. In this interview he talks about his plans for the new project, CrowdLand. 

Pic by Neil Palmer (CIAT).

Farmers in Kenya are one group which the Crowdland Project aims to involve in their data gathering. Photo credit: Neil Palmer, CIAT

What’s the problem with current land cover data?
There are discrepancies between current land cover products, especially in cropland data. It’s all based on satellite data, and in these data, it is extremely difficult to distinguish between cropland and natural vegetation in certain parts of the world if you do not use so-called very high resolution imagery, similar to a picture you take from space. With this high-resolution data you can see structures like fields and so on, which you can then use to distinguish between natural vegetation and cropland. But this is a task where currently people are still better at than computers–and there is a huge amount of data to look at.

In our Geo-Wiki project and related efforts such as the Cropland Capture game, we have asked volunteers to look at these high-resolution images and classify the ground cover as cropland or not cropland. The efforts have been quite successful, but our new project will take this even further.

How will the new project expand on what you’ve already done in Geo-Wiki?
The big addition is to go on the ground. Most of the exercises we currently do are based on the desktop or the phones, or tablets, asking volunteers to classify imagery that they see on a screen.

What this project aims to do is to improve data you collect on the ground, known as in-situ data.  You can use photography, GPS sensors, but also your knowledge you have about what you see. We will use volunteers to collect basic land cover data such as tree cover, cropland, and wetlands, but also much more detailed land-use information. With this type of data we can document what crops are grown where, whether they are irrigated, if the fields are fertilized, what exact type of crops are growing, and other crop management information which you cannot see in satellite imagery. And there are some things you can’t even see when you’re on the ground, thus you need to ask the farmer or recruit the farmer as a data provider. That’s an additional element this project will bring, that we will work closely with farmers and people on the ground.

For the study, you have chosen Austria and Kenya. Why these two countries?
In Austria we have much better in situ data. For example, the Land Use Change Analysis System (LUCAS) in Europe collects in situ data according to a consistent protocol. But this program is very expensive, and the agency that runs it, Eurostat, is discussing how to reduce costs. Additionally the survey is only repeated every three years so fast changes are not immediately recorded. Some countries are not in favor of LUCAS and they prefer to undertake their own surveys. Then however you lose the overall consistency and there is no Europe-wide harmonized database which allows for comparison between countries.   Our plan is to use gaming, social incentives, and also small financial incentives to conduct a crowdsourced LUCAS survey. Then we will examine what results you get when you pay volunteers or trained volunteers compared to the data collected by experts.

In Kenya, the idea is similar, but in general in the developing world we have very limited information, and the resources are not there for major surveys like in Europe. In order to remedy that the idea is again to use crowdsourcing and use a “bounded crowd” which means people who have a certain level of expertise, and know about land cover and land use, for example people with a surveyor background, university students, or interested citizens who can be trained. But in developing countries in particular it’s important to use financial incentives. Financial incentives, even small ones, could probably help to collect much larger amounts of data. Kenya is a good choice also because it has quite a good internet connection, a 3G network, and a lot of new technologies evolving around mobile phones and smartphone technology.

What will happen with the data you collect during this project?
First, we will analyze the data in terms of quality.  One of our research questions is how good are the data collected by volunteers compared to data collected by experts. Another research question is how can imperfect but large data collected by volunteers be filtered and combined so that it becomes useful and fulfills the scientific accuracy requirements.

Then we will use these data and integrate them into currently existing land use and land cover data, and find ways to make better use of it. For example, in order to make projections about future land-use and to better quantify current yield gaps it is crucial to get accurate current information on land-use, including spatially explicit information on crop types, crop management information and other data.

Once we have done some quality checks we will also make these data available for other researchers or interested groups of people.

Crowdsourcing for land cover is in its infancy. There have been lots of crowdsourcing projects in astronomy, archaeology, and biology, for example, but there hasn’t been much on land use, and there is huge potential there. ”We need to not only better understand the quality of the data we collect, but also expand the network of institutions who are working on this topic.”

Note: This article gives the views of the interviewee, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.