Interview: Can nature bounce back?

Jesse Ausubel is director of the Rockefeller University Program for the Human Environment. He was a participant in one of the first classes of IIASA’s Young Scientists Summer Program (YSSP).

Please tell us about your current job – what is your major area of focus?
I do research and manage research.  My research primarily concerns sparing natural resources through changes in technology and consumer behavior.  The main projects I help manage are the Deep Carbon Observatory  (concerned with the origins of life and hydrocarbons) and the International Quiet Ocean Experiment (aiming to achieve a better soundscape of the oceans, including human additions of noise).

In your recent paper, Nature Rebounds, you present a hopeful view of environmental change which contrasts with many other views of the future. What makes you think your view is possible?
The paper looks objectively at the peaking of demand for many natural resources that has occurred in the USA and elsewhere since about 1990.  Demand for water, energy, land, and minerals is softening, while demand for information continues to soar.  Fortunately, information brings precision in production and consumption and spares other resources.  The result is, for example, huge regrowth of forests.  The global greening, or net growth of the terrestrial biosphere, allows re-wilding.  Ecological restoration inspires many people, although learning again to live in proximity to bears and wolves is not simple.

The American bald eagle population has recovered from endangered status. Photo: US Fish and Wildlife

The American bald eagle population has recovered from endangered status. Photo: US Fish and Wildlife

What would be the key changes humanity would need to make for this vision to come true at a global scale?
Most of what happens is not because humanity consciously and deliberately strategizes and makes changes.  The role of policy is vastly exaggerated.  French intellectual Bertrand de Jouvenel wrote in his profound 1945 book, Du Pouvoir, “politics is the last repository of hope. “ High tech tycoons Steve Jobs (Apple) and Jeff Bezos (Amazon) popularized tablets and e-readers and did more, together with the innovators in e-mail, to spare forests than all the forest activists and UN targets.  Good systems analysts find high leverage for sound directions like decoupling and recycling. Simply observing well, describing the world as it is, matters greatly and demands tremendous skill and dedication.

Ausubel wears the ribbon of the International Cosmos Prize, which he shared with other leaders of the Census of Marine Life program. Photo courtesy Jesse Ausubel

Ausubel wears the ribbon of the International Cosmos Prize, which he shared with other leaders of the Census of Marine Life program. Photo courtesy Jesse Ausubel

Please tell us about your YSSP work at IIASA? What were your questions, and what did you find?
I participated in the 1979 YSSP, the second class.  IIASA’s energy group had developed scenarios of how human activities might change climate. My task was to explore impacts of climate and adaptations.  The 1980 book Climatic Constraints and Human Activities summarizes much of what we learned. Most of the book still reads well.  Following climate today, I am reminded of the remark, “Everything has been said, but not everyone has had a chance to say it.”

How did the YSSP influence your career?
My YSSP summer encouraged a big drop in my disciplinary and national prejudices. My chief, Soviet hydrodynamicist Oleg Vasiliev, had great intellectual integrity.  We had a wonderful rapport and in fact in July I sent him best wishes for his 90th birthday.  Oleg invited me to stay in Laxenburg for two more years, which opened more avenues, most importantly collaborations with Cesare Marchetti, Nebojsa Nakicenovic, and Arnulf Gruebler which continue today. The YSSP class itself was lively and talented; John Birge, for example, has had a great career in operations research.  Finally, IIASA showed me the value of scientific cooperation between nations in conflict, and I have actively supported such cooperation ever since.
Reference
Ausubel, Jesse H. 2015. “Nature Rebounds.” Long Now Foundation Seminar, San Francisco, 13 January 2015. http://phe.rockefeller.edu/docs/Nature_Rebounds.pdf.

Note: This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.

The city resilient – some systems thinking

By Bruce Beck, Imperial College London and Michael ThompsonIIASA Risk, Policy and Vulnerability (RPV) Program.

What do Arsenal’s Emirates Stadium in London, the now glorious heritage of Islington’s housing stock, and the cable-car system in Kathmandu for getting milk supplies to that city, all have in common?

An aerial view of the Emirates Stadium and surrounding area (credit: Peter McDermott/CC BY-SA 2.0)

They are (or were) all transformative in their own way. All are commendable outcomes from the process of city governance that we argue will be essential for Coping with Change, the subject of our working paper for the Foresight Future of Cities project. Each is a primary case study in the analysis of our paper. We call this kind of governance ‘clumsiness’. It is something that does not evoke any sense of the familiar attributes of suaveness, elegance, and consensuality implied and valued in most other kinds of governance. So what, then, makes this thing with such an awkward, provocative name so relevant to the future of cities?

Before and after: Islington’s clumsy and resilient resurgence.

Imagine the city being buffeted about by all manner of social, economic, and natural disturbances over time. There will be times for taking risks with the city’s affairs, and times for avoiding them, or managing them, even just absorbing them – 4 mutually exclusive ways of apprehending how the world works, as it were, and 4 accompanying styles of coping.

In the financial industry, this risk typology has been referred to as the 4 seasons of risk. These are strategically and qualitatively different macroscopic regimes of system behaviour; coping with change between one and another of them is every bit as strategically significant. Conventionally, we recognise only 2 of these regimes: those giving rise to boom and bust in the economy. They reflect just 2 of the 4 ways of understanding the world and acting within it. The nub of the distinctive advantage of clumsiness over other forms of governance for coping with change and transformation is the richness of its (fourfold) diversity of perspective, from which may derive resilience and adaptability in the city’s response to any disturbance – big or small, economic, social, or natural.

Clumsiness is most assuredly deeply participatory. Its process is assiduously supportive of robust, noisy, disputatious debate: witness the gyrations in the Arsenal, Islington, and (especially so) Kathmandu case studies. This is exactly as one should expect of any meaningful engagement among the city’s stakeholders: the public-sector agencies, community activists, private-sector businesses, and so on, all with their own vested interests. The 4 ways of seeing the world are mutually opposed; each is sustained in its opposition to the others, as will be the shaping of their aspirations for the future. Each needs the challenges from the others, not least to avoid the ‘group-think’ in governance that is of such considerable concern to government in managing financial risk.

At the peak of deliberative quality in governance, all 4 outlooks are granted access and responsiveness in the debate, in the process of clumsiness, in other words, in coming to a decision or policy — with ever higher social consent. And in the clumsiest of outcomes, each opposing group gets more of what it wants, and less of what it does not want, at least for a while, until everything about the city’s affairs is revisited once again, as the various seasons of risk come around, each holding sway in turn. As we say in our working paper, clumsiness is why village communities in the Himalayas and Swiss Alps have remained viable over the centuries, without destroying either themselves (‘man’) or their environments (‘nature’) – sustainability par excellence, in other words.

So now we must ask: can cities be viable and sustainable in the same way as these mountain villages? In particular, how can the city’s built environment – the infrastructure that mediates between nature and man, the natural and human environments – be made resilient and adaptable, especially in an ecological sense? Thus might we possess this much prized attribute of systems behaviour in each of the natural, built, and human environments, and in a mutually reinforcing manner. What role might clumsiness have in all of this?

In closing our working paper, where we “connect the systemic dots” of our entire argument, we touch upon a computational foresight study in seeking a smarter urban metabolism for London. The fourfold typology of clumsiness is employed to define future target aspirations for the city (quantitatively expressed, under gross uncertainty). These should be the distant outcomes of the fourfold narratives of how the world is believed to work and what it is that each attaching vested interest much wants – and decidedly does not want. An inverse sensitivity analysis (redolent of a computational backcasting) identifies what is key (and what redundant) to the ‘reachability’ (or not) of each of the 4 sets of aspirations for the distant future. Imagine then the urine-separating toilet (UST) as the clumsy solution to a smarter metabolism for London – a smarter way, that is, of the city’s processing of the resource flows of water, energy, carbon, nitrogen, and phosphorus passing through its social-economic life. Rather more grandly put, imagine instead the UST as a “privileged, non-foreclosing policy-technology innovation” for today!

Well now … if clumsiness is such a jolly good thing, what else might it do for us and our cities? We submit it promises the prospect of greater resilience and adaptability in the governance of innovation ecosystems, extending thus the lines of evidence recounted for re-invigoration of the industrial economy of NE Ohio in Katz & Bradley’s recent (2013) book Metropolitan Revolution. ‘Resilience’ and ‘ecosystem’ are (for now) ubiquitous in our everyday language. But no-one, as far as we are aware, has thought of applying the immensely rich notion of ecological resilience to orchestrating the creative and clumsy affairs of an innovation ecosystem. We are currently examining this.

Read the full report

Featured image by Peter McDermott. Used under Creative Commons.

For further information on the Foresight Future of Cities project visit: https://futureofcities.blog.gov.uk

Interview: Coal, natural gas, and clean air for China

Jun Liu, a PhD student at the College of Environmental Sciences and Engineering in Peking University, Beijing, China, has won the annual Mikhalevich Award for her outstanding research as part of the 2014 Young Scientists Summer Program (YSSP) in IIASA’s Mitigation of Air Pollution and Greenhouse Gases research program.

Jun Liu, second from right, at the YSSP award ceremony in August 2014.

Jun Liu, second from right, at the YSSP award ceremony in August 2014.

Could you tell me a bit about yourself? Where are you from and what do you study?
I’m a fifth-year PHD student from College of Environmental Sciences and Engineering in Peking University, Beijing, China. My major is Environmental Sciences. My main fields of scientific interest include source of air pollution, regional air quality modeling, mitigation policy and health effects of atmospheric air pollutants.

Why did you apply to the Young Scientists Summer Program?
For a long time before the YSSP, I had read many excellent research papers on the RAINS and GAINS model. It was developed at IIASA. I hoped to have chance to utilize the model in my research. At the same time, I was so lucky to learn about YSSP application from my supervisors when I was visiting in Princeton University in winter 2013. So I applied for the program.

Please tell me about your research project: What was the question you were trying to answer?
In the background of Russian-China gas deal signed in May 2014, we wanted to discuss and compare the potential air quality benefits for coal substitution strategies between power plants, industrial boilers, and residential cooking and heating activities.

What did you find?
We found that whereas more efforts were directed at the power sector, replacing coal in power sector is actually the least effective strategy to reduce pollutants emissions. Instead, coal substitution in the residential sector achieves the highest potential for emission reduction and air quality benefits.

Thick air pollution is a common problem in many areas of China. Credit: V.T. Polywoda via Flickr.

Air pollution is a serious and growing problem in many areas of China. Credit: V.T. Polywoda via Flickr.

Why is this research important for policy or society?
As we know, China is facing serious air pollution problems. Replacing coal with natural gas is one of the important strategies to reduce this air pollution. Historically, the power sector is the largest coal consumer and receives highest priority for reducing coal use, but the residential sector is scarcely discussed. It is an urgent time for China to propose a rational and effective distribution plan across different sectors for our limited natural gas resources.

My study shows that informed decision making should direct strategies to maximize the air quality and human health benefits, rather than focusing on the control of coal consumption. From this perspective, the residential sector is more promising than power sector and industrial boilers.

How are you planning to continue this research when you return to IIASA?
I plan to finish writing papers for the natural gas scenarios and continue with other policy relevant work, such as potential role of agricultural ammonia emission in air pollution in China.

What was your favorite aspect of the YSSP and IIASA?
First, The YSSP encourages an interdisciplinary perspective and integrated method. Second, we have lots of opportunities to improve our research through discussions with our research teams, our supervisors at IIASA, and experts in other fields who are also at IIASA.  Also we can communicate and learn from other YSSPers to improve our work. The three-month length of the program is highly productive and effective.

What was your favorite moment of the summer?
 There were many moments: I particularly enjoyed the many discussions with my supervisors and my colleagues in my research program, the unforgettable trip with YSSPers to Hallstatt, Asia Day, and the awards ceremony.

Jun Liu, seated at left, and her colleagues in the Mitigation of Air Pollution and Greenhouse Gases research program

Jun Liu, seated at left, and her colleagues in the Mitigation of Air Pollution and Greenhouse Gases research program

William Nordhaus: A new model for climate treaties

“We have to recognize that international approaches to climate change have basically failed. They are not going anywhere, maybe even backwards,” said economist William Nordhaus at a lecture for IIASA staff and young scientists on 23 June. The reason for this failure, he argued, is that international agreements have so far failed to deal with the problem of free riders.

The Kyoto Protocol, for instance, failed as countries dropped out one by one, as soon as mitigation started to become costly. Many countries never even ratified the agreement. Nordhaus explained, “There were no penalties for dropping out.”

Norhaus first introduced the concept at the IIASA 40th Anniversary Conference in 2012.

Norhaus first introduced the concept of climate clubs at the IIASA 40th Anniversary Conference in 2012.

As the next round of climate talks approach this winter and next in Paris, many researchers say it is time for a new model for international climate change treaties. One new idea, which Nordhaus first proposed at the IIASA 40th Anniversary Conference in 2012, is the concept of “climate clubs.”

Nordhaus said, “Think of the treaty as a club. It’s a voluntary agreement, where members get certain benefits, for a certain cost.” A climate club would work like a free-trade union, such as the EU. It would encourage participation by penalizing non-participants, allowing members of the “climate club” to charge tariffs on all imports of non-participating nations. In his lecture on Monday, Nordhaus expanded on the concept he introduced in 2012, presenting the results of modeling work to determine the tariff rates and carbon prices that would be needed in such an agreement, and how participation would look.

Nordhaus found that more countries were likely to participate when carbon prices were lower. At a carbon price of 25 or 50 dollars, a majority of world regions would participate in the club, while at higher carbon prices of 75 to 100 dollars per ton of carbon dioxide, the highest participation rate would be only about half of that.

From left: William Nordhaus, Nebojsa Nakicenovic, and Joanne Bayer

At IIASA on Monday. From left: William Nordhaus, IIASA Deputy Director General Nebojsa Nakicenovic, and IIASA Risk Policy and Vulnerability Program Director Joanne Bayer

The high carbon price, Nordhaus explained, would make the cost of participating much higher than the costs of tariffs for non-participants. However, with a lower carbon price, even low penalty tariffs of 3 to 4% could be enough to encourage participation. The idea of tariffs is simpler than previous suggestions of trade penalties based on the carbon emissions impact of specific goods—which in practice are difficult to define, and, as Nordhaus said, “not a big enough stick to induce participation.”

Like any trade agreement, though, Nordhaus’ climate club also means some win and some lose. When he examines the benefits on a regional level, the US, EU, and India appear to gain the most benefits, while Russia and China gain the least. What would it take to get such an agreement off the ground? Nordhaus said that a few key regions would be enough—for example, the EU, the USA, and China.

Watch Nordhaus’ 2012 Lecture at the IIASA Conference

William Nordhaus is Sterling Professor of Economics at Yale University, New Haven, Connecticut, USA. He has a B.A. from Yale University (1963) and a Ph.D. in Economics from MIT (1967). More>>

Interview: From systems analysis to remote sensing

Eric F. Wood is a hydrologist at Princeton University, well-known for his work in hydrology, climate, and meteorology. He worked as a research scholar in IIASA’s Water program from 1974 to 1976. On 30 April, 2014, he received the European Geophysical Union’s Alfred Wegener Medal in Vienna, Austria.

credit - princeton

Eric F. Wood (Credit: Princeton University)

IIASA: How did you get interested in hydrology? What drew you to the field?
EW: I came to IIASA after I finished my doctorate at MIT. I worked in the areas of system analysis and statistics related to water resources. During my first sabbatical leave at the Institute of Hydrology in the UK (now the Center for Hydrology and Ecology), I started to collaborate with Keith Beven on hydrological modeling, which started my transition towards the physical side of the water cycle from the policy and systems analysis side.

A few years later, Robert Gurney, then at NASA and now at the University of Reading (UK), asked if I would be on the Science Advisory Committee for NASA’s Earth Observing System (EOS), which was just starting to be planned. This started my research activities in terrestrial remote sensing.   Over the next 25 years these elements have played heavily in my research activities.

What have been the biggest changes in hydrology and earth science over your career – either in terms of new understandings, or in how the science is done?
I can name three huge changes, all inter-connected: One is the increase in computational resources. High performance computing—petabyte computing using 500,000+ cores—is now available that allows us to simulate the terrestrial water and energy budgets using physics resolving land surface models at 100m to 1km resolutions over continental scales, and soon at global scales. The second big change is the availability of remotely sensed observations. There are satellite missions that have lasted far beyond their planned lifetimes, such as the NASA EOS Terra mission, where we now have over 15 years of consistent observations. These observations have been reprocessed as algorithms have improved so we can now use the information to understand environmental change at regional to global scales. The third major shift has been computer storage. Large amounts are available at low prices. We have about 500 Terabytes of RAID storage, and can acquire 150TB for about $10,000 or less. This allows us to store model simulations, remote sensing data, and do analyses that were once impossible. Together, these three changes have transformed my field, and the field of climate change related to terrestrial hydrology. Going forward, we have the data, the projections and analytical tools to look at water security in the 21st Century under environmental change.

What insights has remote sensing brought to hydrology?
Remote sensing offers a global consistency that is unavailable with in-situ observations, and offers observations over regions without ground data. This permits us to analyze hydrologic events such as droughts within a global context, and relate these hydrologic events to other drivers like ENSO (tropical Pacific sea surface temperature anomalies) that affect weather and seasonal climate patterns.

Credit: Carolina Reyes (distributed via imaggeo.egu.eu)

Wood’s work has focused in part on drought and climate change. Badwater, California, a huge salt flat drainage system for the Death Valley desert. Credit: Carolina Reyes (distributed via imaggeo.egu.eu)

What do you see as the key questions currently facing water resources?
The biggest question I see over the next decades is how water security will be affected by environmental change. By environmental change I mean climate change, global urbanization, increasing demand for food, land use and land cover change, pollution, etc. Water security is coupled to food and energy security, and water security is and it is intrinsically linked to the climate system and how that may be changing.

How did IIASA influence your research interests or career?
I made many friendships during my stay at IIASA and I was exposed to world-class research and researchers. This helped me in thinking about important research questions and the types of problems and research that will have impact.

What do you think is the role for IIASA in the worldwide research community?
There are many answers to this question. IIASA plays an important role in providing critical scientific information and analyses related to global issues that go beyond countries – transboundary analyses, and therefore that can provide the scientific basis for global policies. There is an urgent need for more global policies on environmental change and adaptation, food and water security, and environmental refugees, to name just a couple examples in my area.

IIASA has also developed scientific methods and data that can be applied by various groups. For example, IIASA’s world renowned integrated assessment models have been used in climate change modeling for the IPCC and Coupled Model intercomparison Project (CMIP).

Note: This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.

Alumni memories: nuclear reactors and energy models

By Alan McDonald, IIASA Alumnus (1979-82 and 1997-2000) and member of the IIASA Alumni Advisory Board

I stumbled on IIASA in 1975. I was 24 and working for General Electric’s Fast Breeder Reactor Department. I was supposed to figure out how safe General Electric should make its new breeder reactor, a type of nuclear reactor (The project later died when Jimmy Carter came to the White House and the uranium price plummeted). We researched what was going on around the world on determining acceptable risks. The best stuff was coming from this place outside Vienna called the International Institute for Applied Systems Analysis. We didn’t know IIASA was only two years old. We only knew its papers on determining acceptable risks were better than anyone else’s.

In 1977 I look a leave from GE to go to the Kennedy School of Government at Harvard. In my second year I was a teaching assistant for Howard Raiffa and took his seminar on the art and science of negotiation. After graduation, I asked if I could get a job at IIASA. Perhaps in an administrative capacity, he thought, since I didn’t have a PhD. If I wrote a page about why IIASA should consider me, he might forward it to Laxenburg.

Wolf Häfele hired me for what was then called the Energy Systems Program (ENP). It was 1979, six years after the Arab oil embargo, the creation of OPEC, and an explosion of energy studies in the US and other oil importing countries. All those national studies projected national oil demands exceeding supplies by varying amounts depending on the policies being modeled. Then they labeled the unmet demand “imports.” IIASA was the first to check if all those imports might add up to more than the oil exporters could export, and what might be done about it if they did. In addition, ENP developed the energy supply model MESSAGE, now used in multiple national and international studies. Cesare Marchetti’s logistic model taught humility about dreams of quick policy-driven transitions away from oil. And ENP still had some of the world’s best work on risk acceptance — which had the added benefit of provoking Mike Thompson to analyze the issue through the lens of cultural anthropology and generate a whole new set of useful insights.

I met my wife, Sue, at IIASA. She was in Personnel and, when I arrived, briefed me about leave slips and all the rest. Part way through, she stopped. “You’re not listening,” she said. “If I have questions, I can come back,” said I. I did, and I did.

Two and a half years later we left IIASA, got married and did a 5-month road-trip honeymoon around the US on the theory it might be another 50 years before we were again so unburdened with obligations (right so far). The trip ended in Cambridge, Massachusetts. The US membership in IIASA was being exiled from Washington to Cambridge due to Dick Pearle’s and President Reagan’s animosity. I joined up to pitch IIASA’s virtues to foundations, US corporations and anyone who’d listen in Washington. In pitching IIASA’s virtues, there was a lot to work with.

Now there’s even more.

IIASA Alumni Day will take place on April 29, 2014, and we are inviting alumni to send their memories and photos of their time at IIASA. For more alumni memories, see the IIASA Alumni Web page.

From left, Alan McDonald, Sue (Buffery) McDonald, David McDonald (no relation), Walter Foith, Linda Foith, and Bill Godwin-Toby taking a break during the July 4th games, 1980.

From left, Alan McDonald, Sue (Buffery) McDonald, David McDonald (no relation), Walter Foith, Linda Foith, and Bill Godwin-Toby taking a break during the July 4th games, 1980.

 

 

Note: This article gives the views of the author, and not the position of the Nexus blog, nor of the International Institute for Applied Systems Analysis.